1
|
Lin H, Chen Y, Zhou M, Wang H, Chen L, Zheng L, Wang Z, Zheng X, Lu S. Comprehensive analysis of faecal metagenomic and serum metabolism revealed the role of gut microbes and related metabolites in detecting colorectal lateral spreading tumours. Virulence 2025; 16:2489154. [PMID: 40223231 PMCID: PMC12005448 DOI: 10.1080/21505594.2025.2489154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/07/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Colorectal lateral spreading tumours (LST), early-stage lesions of colorectal cancer (CRC), are associated with gut microbiota dysbiosis. However, the functional alterations in gut microbiota and their metabolic pathways remain inadequately understood. This study employed propensity score matching to compare 35 LST patients with 35 healthy controls. Metagenomic and metabolomic analyses revealed notable differences in gut microbiota composition and metabolic pathways. LST patients exhibited a marked reduction in short-chain fatty acid (SCFA)-producing probiotics, such as Roseburia, Clostridium, and Butyricicoccus sp-OF13-6, alongside anti-inflammatory metabolites. In contrast, potential intestinal pathogens linked to inflammatory bowel disease (IBD), including Escherichia and Citrobacter amalonaticus, were significantly enriched. Orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted significant metabolic disparities between the groups, with enrichment in pathways associated with cholesterol metabolism, choline metabolism in cancer, and amino acid metabolism - all relevant to cancer progression. Key biomarkers identified for LST included fumarate, succinate, glutamic acid, glycine, and L-aspartic acid, which were closely linked to these pathways. Functional studies demonstrated that these metabolites promoted the proliferation and invasion of HCT-116 and SW480 human colorectal cancer cells in vitro. Metagenomic and metabolomic analysis revealed a strong positive correlation between Escherichia and Ruminococcus sp-AM41-2AC abundance and the enriched pathways, whereas reductions in Roseburia species, including Roseburia-OF03-24 and Roseburia intestinalis_CAG13-exhibited negative correlations. These results suggest that gut microbiota and metabolite alterations in LST contribute to intestinal inflammation and CRC development, underscoring their potential as biomarkers for early detection and therapeutic targets.
Collapse
Affiliation(s)
- Hao Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yudai Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Ming Zhou
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Hongli Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Lichun Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Li Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Zhixin Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiaoling Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Shiyun Lu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Wu S, Luo Y, Wei F, Li Y, Fan J, Chen Y, Zhang W, Li X, Xu Y, Chen Z, Xia C, Hu M, Li P, Gu Q. Lactic acid bacteria target NF-κB signaling to alleviate gastric inflammation. Food Funct 2025; 16:3101-3119. [PMID: 40152095 DOI: 10.1039/d4fo06308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Helicobacter pylori (H. pylori) infection and the resulting gastric inflammation are major contributors to gastric cancer development. Probiotics, particularly Lactobacillus, are promising for their anti-inflammatory potential, yet their exact mechanisms in inhibiting H. pylori-induced inflammation are unclear. In our previous study, Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) demonstrated strong anti-inflammatory effects against H. pylori infection in vivo, but its precise mechanisms were not fully understood. Here, we aimed to investigate how L. plantarum ZJ316 inhibits the inflammatory response to H. pylori infection. Our results demonstrated that L. plantarum ZJ316 effectively reduced the expression of pro-inflammatory cytokines in H. pylori-infected AGS cells. Mechanistically, L. plantarum ZJ316 inhibited the NF-κB signaling pathway by preventing the degradation of IκBα, suppressing p65 phosphorylation, and blocking the nuclear translocation of phosphorylated p65. Treatment with the NF-κB inhibitor BAY 11-7082 further decreased tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-1β (IL-1β) levels, confirming the inhibitory effect of L. plantarum ZJ316 on the NF-κB pathway. In H. pylori-infected mice, oral administration of L. plantarum ZJ316 significantly alleviated inflammatory cell infiltration, reduced TNF-α and pepsinogen II (PGII) levels, and increased interleukin-10 (IL-10) levels in serum. A comparative metagenomic analysis of the gastric microbiota revealed a decrease in Prevotella and Desulfovibrio, alongside an increase in Ligilactobacillus and Akkermansia, supporting the protective effects of L. plantarum ZJ316 and correlating with their decreased inflammatory response. In summary, administration of L. plantarum ZJ316 demonstrated robust anti-inflammatory effects against H. pylori infection by suppressing NF-κB signaling and promoting favorable changes in the gastric microbiota composition. Therefore, L. plantarum ZJ316 holds promise as a novel functional food for protecting the body against H. pylori infection.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yuenuo Luo
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jiayi Fan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Wenjie Zhang
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Xuelong Li
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Yang Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Mingyang Hu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
3
|
Blaheta RA, Han J, Oppermann E, Bechstein WO, Burkhard K, Haferkamp A, Rieger MA, Malkomes P. Transglutaminase 2 promotes epithelial-to-mesenchymal transition by regulating the expression of matrix metalloproteinase 7 in colorectal cancer cells via the MEK/ERK signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167538. [PMID: 39389321 DOI: 10.1016/j.bbadis.2024.167538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Tissue transglutaminase 2 (TGM2) and matrix metalloproteinase 7 (MMP7) are suggested to be involved in cancer development and progression, however, their specific role in colon cancer remains elusive. The present study investigated whether TGM2 and MMP7 influence epithelial-mesenchymal-transition (EMT) processes of colon cancer cells. TGM2 was either overexpressed or knocked down in SW480 and HCT-116 cells, and MMP7 expression and activity analyzed. Conversely, MMP7 was silenced and its correlation with TGM2 expression and activity examined. Co-immunoprecipitation served to evaluate TGM2-MMP7-interaction. TGM2 and MMP7 expression were correlated with invasion, migration, EMT marker expression (E-cadherin, N-cadherin, Slug, Snail), and ERK/MEK signaling. TGM2 overexpression enhanced MMP7 expression and activity, promoted cell invasion, migration and EMT, characterized by increased N-cadherin and Snail/Slug expression. TGM2 knockdown resulted in the opposite effects. Knocking down MMP7 was associated with reduced TGM2 protein expression, cell invasion and migration. Down-regulation of MMP7 diminished ERK/MEK signaling, whereas its up-regulation activated this pathway. The ERK-inhibitor GDC-0994 blocked phosphorylation of MEK/ERK and suppressed TGM2 and MMP7. TGM2 communicates with MMP7 in colon cancer cells forces cell migration and invasion by the MEK/ERK signaling pathway and triggers EMT. Inhibiting TGM2 could thus offer new therapeutic options to treat patients with colon cancer, particularly to prevent metastatic progression.
Collapse
Affiliation(s)
- Roman A Blaheta
- University Medical Center Mainz, Dept. of Urology and Pediatric Urology, 55131 Mainz, Germany.
| | - Jiaoyan Han
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Katrin Burkhard
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany; Current affiliation: Department of Legal Medicine, University of Saarland Medical School, 66421 Homburg, Germany
| | - Axel Haferkamp
- University Medical Center Mainz, Dept. of Urology and Pediatric Urology, 55131 Mainz, Germany
| | - Michael A Rieger
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary-Institute, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Patrizia Malkomes
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Carranza FG, Diaz FC, Ninova M, Velazquez-Villarreal E. Current state and future prospects of spatial biology in colorectal cancer. Front Oncol 2024; 14:1513821. [PMID: 39711954 PMCID: PMC11660798 DOI: 10.3389/fonc.2024.1513821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024] Open
Abstract
Over the past century, colorectal cancer (CRC) has become one of the most devastating cancers impacting the human population. To gain a deeper understanding of the molecular mechanisms driving this solid tumor, researchers have increasingly turned their attention to the tumor microenvironment (TME). Spatial transcriptomics and proteomics have emerged as a particularly powerful technology for deciphering the complexity of CRC tumors, given that the TME and its spatial organization are critical determinants of disease progression and treatment response. Spatial transcriptomics enables high-resolution mapping of the whole transcriptome. While spatial proteomics maps protein expression and function across tissue sections. Together, they provide a detailed view of the molecular landscape and cellular interactions within the TME. In this review, we delve into recent advances in spatial biology technologies applied to CRC research, highlighting both the methodologies and the challenges associated with their use, such as the substantial tissue heterogeneity characteristic of CRC. We also discuss the limitations of current approaches and the need for novel computational tools to manage and interpret these complex datasets. To conclude, we emphasize the importance of further developing and integrating spatial transcriptomics into CRC precision medicine strategies to enhance therapeutic targeting and improve patient outcomes.
Collapse
Affiliation(s)
- Francisco G. Carranza
- Department of Integrative Translational Sciences, City of Hope, Beckman Research Institute, Duarte, CA, United States
| | - Fernando C. Diaz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Maria Ninova
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Enrique Velazquez-Villarreal
- Department of Integrative Translational Sciences, City of Hope, Beckman Research Institute, Duarte, CA, United States
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
5
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
6
|
Miraki Feriz A, Khosrojerdi A, Erfanian N, Azarkar S, Sajjadi SM, Shojaei MJ, Vaferi MJ, Safarpour H, Racanelli V. Targeting the dynamic transcriptional landscape of Treg subpopulations in pancreatic ductal adenocarcinoma: Insights from single-cell RNA sequencing analysis with a focus on CTLA4 and TIGIT. Immunobiology 2024; 229:152822. [PMID: 38852289 DOI: 10.1016/j.imbio.2024.152822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that represents a significant challenge in cancer research and clinical management. In this study, we reanalyzed a published single-cell RNA sequencing (scRNA-seq) dataset from PDAC and adjacent tissues to investigate the heterogeneity of tumor and normal tissue, specifically focusing on the regulatory T cells (Tregs) and their interactions with other cells in the tumor microenvironment (TME). Treg cells were identified and clustered into natural Tregs (nTreg) and induced Tregs (iTreg) based on the expression of specific genes. It was found that the number of iTregs was higher in the tumor than in healthy tissues, while the number of n Tregs was higher in healthy tissues. Differential gene expression analysis was performed, and biological process analysis revealed that the Tregs in PDAC were mostly involved in protein targeting and translation pathways. In addition, ligand-receptor pairs between Tregs and other cell types were identified, and the critical communication pathways between Tregs and endothelial and ductal cells were revealed, which could potentially contribute to the immunosuppressive TME of PDAC. These findings provide insights into the role of Tregs in PDAC and their interactions with other cell types in the TME, highlighting potential targets for immunotherapy, such as the inhibitory immune checkpoint receptors CTLA4 and TIGIT, which are known to be expressed on Tregs and have been shown to play a role in suppressing anti-tumor immune responses.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | | | - Mohammad Javad Vaferi
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), 38122, Trento, Italy.
| |
Collapse
|
7
|
Abdoli Shadbad M, Miraki Feriz A, Baradaran B, Safarpour H. Tumor-infiltrating CD8 + sub-populations in primary and recurrent glioblastoma: An in-silico study. Heliyon 2024; 10:e27329. [PMID: 38495199 PMCID: PMC10943382 DOI: 10.1016/j.heliyon.2024.e27329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) remains an incurable primary brain tumor. CD8+ tumor-infiltrating lymphocytes (TILs) can target malignant cells; however, their anti-tumoral immune responses mostly do not lead to GBM rejection in GBM patients. We profiled the sub-populations of tumor-infiltrating CD8+ T-cells, i.e., naïve, cytotoxic, and exhausted cells, in primary and recurrent GBM tissues and provided a blueprint for future precision-based GBM immunotherapy. Method We re-analyzed the raw data of single-cell RNA sequencing on the cells residing in the GBM microenvironment and leveraged tumor bulk RNA analyses to study the significance of CD8+ TILs sub-populations in primary and recurrent GBM. We investigated cell-cell interaction between exhausted CD8+ TILs and other immune cells residing in the primary and recurrent GBM microenvironments and profiled the expression changes following CD8+ TILs' transition from primary GBM to recurrent GBM. Results Exhausted CD8+ TILs are the majority of CD8+ TILs sub-populations in primary and recurrent GBM, and cytotoxic CD8+ TILs display decreased expression of inhibitory immune checkpoint (IC) molecules in the primary and recurrent GBM. In the primary and recurrent GBM microenvironment, exhausted CD8+ TILs interact most with tumor-infiltrating dendritic cells. Conclusion This study demonstrates the profiles of CD8+ TILs sub-populations in primary and recurrent GBM and provides a proof-of-concept for future precision-based GBM immunotherapy.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|