1
|
Hou X, Hu G, Wang H, Yang Y, Sun Q, Bai X. Inhibition of Egr2 Protects against TAC-induced Heart Failure in Mice by Suppressing Inflammation and Apoptosis Via Targeting Acot1 in Cardiomyocytes. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10602-5. [PMID: 40095198 DOI: 10.1007/s12265-025-10602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Heart failure (HF) is a clinical syndrome caused by structural or functional abnormalities in heart. Egr2 has been reported to be protective for multiple diseases, but its effect on HF remains unknown. The present study intended to investigate the potential role of Egr2 in HF and its possible downstream effectors. High Egr2 expression in heart was observed in HF mice. Egr2 knockdown alleviated cardiac damage and function in HF mice. Egr2 knockdown inhibited myocardial inflammation and apoptosis both in vivo and in vitro. Egr2 inhibited Acot1 transcription expression via directly binding to its promoter. Acot1 overexpression reduced Lipopolysaccharide (LPS)-induced cardiomyocyte inflammation and apoptosis. Functional rescue experiments revealed that Acot1 reversed the effects of Egr2 on LPS-induced cell apoptosis and inflammation. Overall, Egr2 knockdown might ameliorate HF by inhibiting inflammation and apoptosis in cardiomyocytes by targeting Acot1. This study might provide evidence to better understand the molecular mechanisms of HF pathogenesis.
Collapse
Affiliation(s)
- Xiaolu Hou
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001, China
| | - Guoling Hu
- Department of Geratology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Heling Wang
- Department of Cardiology, Langfang Changzheng Hospital, Langfang, China
| | - Ying Yang
- Department of Cardiology, Harbin 242 Hospital, Harbin, China
| | - Qi Sun
- Department of Cardiology, Beidahuang Group General Hospital, Harbin, China
| | - Xiuping Bai
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
2
|
Chen S, Ding S, Pang Y, Jin Y, Sun P, Li Y, Cao M, Wang Y, Wang Z, Wang T, Zou Y, Zhang Y, Xiao M. Dysregulated miR-124 mediates impaired social memory behavior caused by paternal early social isolation. Transl Psychiatry 2024; 14:392. [PMID: 39341799 PMCID: PMC11438908 DOI: 10.1038/s41398-024-03109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Early social isolation (SI) leads to various abnormalities in emotion and behavior during adulthood. However, the negative impact of SI on offspring remains unclear. This study has discovered that paternal early SI causes social memory deficits and anxiety-like behavior in F1 young adult mice, with alterations of myelin and synapses in the medial prefrontal cortex (mPFC). The 2-week SI in the F1 progeny exacerbates social memory impairment and hypomyelination in the mPFC. Furthermore, the down-regulation of miR-124, a key inhibitor of myelinogenesis, or over-expression of its target gene Nr4a1 in the mPFC of the F1 mice improves social interaction ability and enhances oligodendrocyte maturation and myelin formation. Mechanistically, elevated levels of miR-124 in the sperm of paternal SI mice are transmitted epigenetically to offspring, altering the expression levels of miR-124/Nr4a1/glucocorticoid receptors in mPFC oligodendrocytes. This, in turn, impedes the establishment of myelinogenesis-dependent social behavior. This study unveils a novel mechanism through which miR-124 mediates the intergenerational effects of early isolation stress, ultimately impairing the establishment of social behavior and neurodevelopment.
Collapse
Affiliation(s)
- Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yingting Pang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxi Jin
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yimiao Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Tianqi Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Ying Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China.
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, 213000, China.
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
| |
Collapse
|
3
|
Feng W, Zhang Y, Wang Z, Wang T, Pang Y, Li Y, Wang Y, Ding S, Chen S, Zou Y, Xiao M. Protocol for evaluating mutualistic cooperative behavior in mice using a water-reward task assay. STAR Protoc 2024; 5:103023. [PMID: 38640064 PMCID: PMC11047788 DOI: 10.1016/j.xpro.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024] Open
Abstract
Social cooperation is fundamentally important for group animals but rarely studied in mice because of their natural aggressiveness. Here, we present a new water-reward assay to investigate mutualistic cooperative behavior in mice. We describe the construction of the apparatus and provide details of the procedures and analysis for investigators to characterize and quantify the mutualistic cooperative behavior. This protocol has been validated in mice and can be used for investigating mechanisms of cooperation. For complete details on the use and execution of this protocol, please refer to Zhang et al. and Wang et al.1,2.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou 213000, China.
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Tianqi Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingting Pang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yue Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yimiao Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China.
| |
Collapse
|
4
|
Reinhardt PR, Theis CDC, Juckel G, Freund N. Rodent models for mood disorders - understanding molecular changes by investigating social behavior. Biol Chem 2023; 404:939-950. [PMID: 37632729 DOI: 10.1515/hsz-2023-0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, are the group of psychiatric disorders with the highest prevalence and disease burden. However, their pathophysiology remains poorly understood. Animal models are an extremely useful tool for the investigation of molecular mechanisms underlying these disorders. For psychiatric symptom assessment in animals, a meaningful behavioral phenotype is needed. Social behaviors constitute naturally occurring complex behaviors in rodents and can therefore serve as such a phenotype, contributing to insights into disorder related molecular changes. In this narrative review, we give a fundamental overview of social behaviors in laboratory rodents, as well as their underlying neuronal mechanisms and their assessment. Relevant behavioral and molecular changes in models for mood disorders are presented and an outlook on promising future directions is given.
Collapse
Affiliation(s)
- Patrick R Reinhardt
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Candy D C Theis
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Georg Juckel
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| |
Collapse
|