1
|
Lindström L, Zhou J, Villoutreix BO, Malycheva D, Otrocka M, Gustavsson A, Lundbäck T, Bliman D, Shameem MA, Straw M, Riesbeck K, Olsson R, Alvarado‐Kristensson M. Targeting TUBG1 in RB1-negative tumors. FASEB J 2025; 39:e70431. [PMID: 40019206 PMCID: PMC11869804 DOI: 10.1096/fj.202403180rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
The disruption of microtubule dynamics serves as a pivotal strategy for eliminating tumor cells, despite its accompanying toxicities affecting non-tumor cells. This study investigates the potential of selectively targeting γ-tubulin1 (TUBG1) as a therapeutic strategy in cancer treatment. By elucidating the TUBG1-E2F1-retinoblastoma protein (RB1) network, we introduce a novel compound, 4-(6-((3-Methoxyphenyl)amino)pyrimidin-4-yl)-N,N-dimethylbenzenamine, (L12). L12 treatment enhanced RB1 expression and selectively targeted cells with impaired RB1 signaling, while reduced E2F1 expression attenuated its cytotoxicity. Furthermore, L12-mediated cytotoxicity depends on an E2F1-mediated upregulation of procaspase 3 expression, highlighting the role of E2F1 in the apoptotic response. Unlike traditional tubulin-targeting agents, L12's specificity for tumor cells lies in its inhibitory effects on TUBG1, without affecting the second human isoform of TUBGs, TUBG2. Despite its interaction with specific kinases, the concentrations required for antitumor effects are 100-fold lower than those influencing kinase activities. Subsequent investigations underscore L12's reduced neuronal axonal toxicity compared to vincristine. Lastly, L12 demonstrates promising results in inhibiting tumor growth in xenografted small cell lung cancer models, demonstrating potential specificity toward tumor cells while minimizing adverse effects on healthy tissues. This research emphasizes the potential of TUBG1 inhibitors as a promising advancement in personalized chemotherapy approaches and their potential as a groundbreaking treatment for various cancers.
Collapse
Affiliation(s)
- Lisa Lindström
- Molecular Pathology, Department of Translational MedicineLund UniversityMalmöSweden
| | - Jingkai Zhou
- Molecular Pathology, Department of Translational MedicineLund UniversityMalmöSweden
| | | | - Darina Malycheva
- Molecular Pathology, Department of Translational MedicineLund UniversityMalmöSweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden, Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| | - Anna‐Lena Gustavsson
- Chemical Biology Consortium Sweden, Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| | - David Bliman
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | | | - Megan Straw
- Clinical Microbiology, Department of Translational MedicineLund UniversityMalmöSweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational MedicineLund UniversityMalmöSweden
| | - Roger Olsson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
- Chemical Biology & Therapeutics, Department of Experimental Medical ScienceLund UniversityLundSweden
| | | |
Collapse
|
2
|
Malycheva D, Alvarado-Kristensson M. Molecular characterization of the TUBG1 meshwork's influence on Cytoskeletal organization. Heliyon 2025; 11:e41829. [PMID: 40013266 PMCID: PMC11862694 DOI: 10.1016/j.heliyon.2025.e41829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/28/2025] Open
Abstract
The γ-tubulin (TUBG) meshwork is a central regulator of cellular architecture, orchestrating processes such as microtubule nucleation, mitochondrial organization, and genomic integrity. This study investigates the molecular impact of TUBG depletion on the cytoskeleton. Knockdown of TUBG using single guide RNA disrupted microtubule, vimentin, and lamin B networks while simultaneously reinforcing actin filaments structures. These findings suggest that actin reinforcement may act as a compensatory response to the broader disruption of cytoskeletal integrity. Expression of N-terminal (TUBG1-335) or C-terminal (TUBG334-451) fragments of TUBG1 partially restored these networks, with the C-terminal fragment demonstrating greater effectiveness reestablishing microtubule integrity. Both fragments stabilized vimentin filaments and the nuclear envelope, underscoring TUBG's dual structural and regulatory roles across multiple cytoskeletal systems. This study highlights the critical hubbing properties of TUBG in coordinating cytoskeletal integrity and its potential as a therapeutic target in cytoskeleton-related disorders.
Collapse
Affiliation(s)
- Darina Malycheva
- Molecular Pathology, Department of Translational Medicine, Lund University, SE, 21428 Malmö, Sweden
| | | |
Collapse
|
3
|
Bednarska I, Malycheva D, Kristensson MA. Complete solubilization of mammalian cells in lysates. MethodsX 2024; 13:102860. [PMID: 39105088 PMCID: PMC11299557 DOI: 10.1016/j.mex.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
In conventional cell lysate protocols, cell debris is typically discarded to obtain a cleaner lysate. However, this approach has limitations, as it may overlook vital cellular components. By discarding cell debris, researchers may inadvertently exclude crucial elements. Retaining all cellular components offers several advantages for studying molecular biology within various cellular compartments. Firstly, it provides a more accurate representation of the cellular environment. Secondly, it enables the study of complex cellular interactions, including those involving cellular structures and signaling pathways associated with debris. This shift in perspective highlights the importance of a holistic approach to lysate preparation. By obtaining lysates that include all cellular components, researchers can gain deeper insights into cellular processes, leading to more accurate data and a better understanding of cellular function and dysfunction. This study aimed to develop a protocol for the preparation of total cell lysates that retain all cellular components, including debris. Our method involves:•A three-step solubilization process using a combination of detergents, saccharides, and chelators, coupled with sonication, in contrast to the classical one-step approach using an all-detergent cocktail.•A comprehensive strategy ensuring the solubilization of all cellular components, providing a more complete lysate for analysis.
Collapse
Affiliation(s)
- Izabela Bednarska
- Molecular Pathology, Department of Translational Medicine, Lund University, Inga Marie Nilssons gata 53, SE-214 28 Malmö, Sweden
| | - Darina Malycheva
- Molecular Pathology, Department of Translational Medicine, Lund University, Inga Marie Nilssons gata 53, SE-214 28 Malmö, Sweden
| | - Maria Alvarado Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Inga Marie Nilssons gata 53, SE-214 28 Malmö, Sweden
| |
Collapse
|
4
|
Malycheva D, Alvarado-Kristensson M. Centrosome Movements Are TUBG1-Dependent. Int J Mol Sci 2023; 24:13154. [PMID: 37685969 PMCID: PMC10488117 DOI: 10.3390/ijms241713154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The centrosome of mammalian cells is in constant movement and its motion plays a part in cell differentiation and cell division. The purpose of this study was to establish the involvement of the TUBG meshwork in centrosomal motility. In live cells, we used a monomeric red-fluorescence-protein-tagged centrin 2 gene and a green-fluorescence-protein-tagged TUBG1 gene for labeling the centrosome and the TUBG1 meshwork, respectively. We found that centrosome movements occurred in cellular sites rich in GTPase TUBG1 and single-guide RNA mediated a reduction in the expression of TUBG1, altering the motility pattern of centrosomes. We propose that the TUBG1 meshwork enables the centrosomes to move by providing them with an interacting platform that mediates positional changes. These findings uncover a novel regulatory mechanism that controls the behavior of centrosomes.
Collapse
Affiliation(s)
| | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, 21428 Malmö, Sweden;
| |
Collapse
|
5
|
Ramesh Babu PB. Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools. J Genet Eng Biotechnol 2023; 21:78. [PMID: 37466845 DOI: 10.1186/s43141-023-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Tubulins are highly conserved globular proteins involved in stabilization of cellular cytoskeletal microtubules during cell cycle. Different isoforms of tubulins are differentially expressed in various cell types, and their protein-protein interactions (PPIs) analysis will help in identifying the anti-microtubular drug targets for cancer and neurological disorders. Numerous web-based PPIs analysis methods are recently being used, and in this paper, I used Gene Ontology (GO) tools, e.g., Stringbase, ProteomeHD, GeneMANIA, and ShinyGO, to identify anti-microtubular target proteins by selecting strongly interacting proteins of tubulins. RESULTS I used 6 different human tubulin isoforms (two from each of α-, β-, and γ-tubulin) and found several thousands of node-to-node protein interactions (highest 4956 in GeneMANIA) and selected top 10 strongly interacting node-to-node interactions with highest score, which included 7 tubulin family protein and 6 non-tubulin family proteins (total 13). Functional enrichment analysis indicated a significant role of these 13 proteins in nucleation, polymerization or depolymerization of microtubules, membrane tethering and docking, dorsal root ganglion development, mitotic cycle, and cytoskeletal organization. I found γ-tubulins (TUBG1, TUBGCP4, and TUBBGCP6) were known to contribute majorly for tubulin-associated functions followed by α-tubulin (TUBA1A) and β-tubulins (TUBB AND TUBB3). In PPI results, I found several non-tubular proteins interacting with tubulins, and six of them (HTT, DPYSL2, SKI, UNC5C, NINL, and DDX41) were found closely associated with their functions. CONCLUSIONS Increasing number of regulatory proteins and subpopulation of tubulin proteins are being reported with poor understanding in their association with microtubule assembly and disassembly. The functional enrichment analysis of tubulin isoforms using recent GO tools resulted in identification of γ-tubulins playing a key role in microtubule functions and observed non-tubulin family of proteins HTT, DPYSL2, SKI, UNC5C, NINL, and DDX41 strongly interacting functional proteins of tubulins. The present study yields a promising model system using GO tools to narrow down tubulin-associated proteins as a drug target in cancer, Alzheimer's, neurological disorders, etc.
Collapse
Affiliation(s)
- Polani B Ramesh Babu
- Center for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath Institute of Science and Technology, Selaiyur, Tambaram, Chennai, India.
| |
Collapse
|
6
|
Zhou J, Corvaisier M, Malycheva D, Alvarado-Kristensson M. Hubbing the Cancer Cell. Cancers (Basel) 2022; 14:5924. [PMID: 36497405 PMCID: PMC9738523 DOI: 10.3390/cancers14235924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Oncogenic transformation drives adaptive changes in a growing tumor that affect the cellular organization of cancerous cells, resulting in the loss of specialized cellular functions in the polarized compartmentalization of cells. The resulting altered metabolic and morphological patterns are used clinically as diagnostic markers. This review recapitulates the known functions of actin, microtubules and the γ-tubulin meshwork in orchestrating cell metabolism and functional cellular asymmetry.
Collapse
Affiliation(s)
| | | | | | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Skåne University Hospital Malmö 1, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
7
|
Sulimenko V, Dráberová E, Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front Cell Dev Biol 2022; 10:880761. [PMID: 36158181 PMCID: PMC9503634 DOI: 10.3389/fcell.2022.880761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.
Collapse
Affiliation(s)
| | | | - Pavel Dráber
- *Correspondence: Vadym Sulimenko, ; Pavel Dráber,
| |
Collapse
|
8
|
Monitoring DNA polymerase β mitochondrial localization and dynamics. DNA Repair (Amst) 2022; 116:103357. [PMID: 35717762 PMCID: PMC9253048 DOI: 10.1016/j.dnarep.2022.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Mouse fibroblasts lacking (null) DNA polymerase β (pol β) were transfected with fluorescently tagged pol β and stained with biomarkers to allow visualization within living cells by confocal microscopy. Transient transfection resulted in varying pol β expression levels. Separating cells into three groups based on pol β fluorescence intensity and morphological distribution, permitted analysis of the concentration dependence and spatial distribution of cytoplasmic pol β. Colocalization between pol β and mitochondria was pol β concentration dependent. A decrease in overlap with nucleoids containing mitochondrial DNA (mtDNA) was observed at the highest pol β intensity where pol β exhibits a tubular appearance, suggesting the ability to load elevated levels of pol β into mitochondria readily available for relocation to damaged mtDNA. The dynamics of pol β and mitochondrial nucleoids were followed by confocal recording of time series images. Two populations of mitochondrial nucleoids were observed, with and without pol β. Micro-irradiation, known to form DNA single-strand breaks, in a line across nucleus and cytoplasm of pol β stably transfected cells enhanced apparent localization of pol β with mitochondria in the perinuclear region of the cytoplasm near the nuclear membrane. Exposure of pol β expressing cells to H2O2 resulted in a time-dependent increase in cytoplasmic pol β observed by immunofluorescence analysis of fixed cells. Further screening revealed increased levels of colocalization of pol β with a mitochondrial probe and an increase in oxidative DNA damage in the cytoplasm. ELISA quantification confirmed an increase of an oxidative mitochondrial base lesion, 7,8-dihydro-8-oxoguanine, after H2O2 treatment. Taken together, the results suggest that pol β is recruited to mitochondria in response to oxidatively-induced mtDNA damage to participate in mtDNA repair.
Collapse
|
9
|
Zhou J, Alvarado-Kristensson M. Optimization of production of recombinant gamma-tubulin in bacteria. MethodsX 2021; 8:101517. [PMID: 34754788 PMCID: PMC8563660 DOI: 10.1016/j.mex.2021.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Production of a protein of interest in bacteria and its purification from bacterial lysates are valuable tools for the purification of larger amounts of recombinant proteins. The low cost of culturing, and the rapid cell growth of bacteria make this host a good choice for protein production, but the folding and function of the purified protein might be altered due to the production of a eukaryotic protein in a prokaryotic host. Here, we provide a purification method for the purification of gamma (γ)-tubulin (TUBG) from soluble fractions of Escherichia (E.) coli lysates using affinity tags.This protocol describes a method that purifies soluble GST-TUBG1 from bacteria. Of the three tested induction conditions, the highest yield of recombinant GST-TUBG1 was obtained after the induction of E. coli with isopropyl-D-1-thiogalactopyranoside (IPTG) for 1 h at 37 °C followed by overnight incubation at room temperature. In comparison with other methodologies (Hoog et al., 2011), the technique described here retrieves larger amounts of recombinant TUBG1 from small-scale expression cultures.
Collapse
Affiliation(s)
- Jingkai Zhou
- Molecular Pathology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, Malmö SE-205 02, Sweden
| | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Jan Waldenströms gata 59, Malmö SE-205 02, Sweden
| |
Collapse
|
10
|
Dráber P, Dráberová E. Dysregulation of Microtubule Nucleating Proteins in Cancer Cells. Cancers (Basel) 2021; 13:cancers13225638. [PMID: 34830792 PMCID: PMC8616210 DOI: 10.3390/cancers13225638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The dysfunction of microtubule nucleation in cancer cells changes the overall cytoskeleton organization and cellular physiology. This review focuses on the dysregulation of the γ-tubulin ring complex (γ-TuRC) proteins that are essential for microtubule nucleation. Recent research on the high-resolution structure of γ-TuRC has brought new insight into the microtubule nucleation mechanism. We discuss the effect of γ-TuRC protein overexpression on cancer cell behavior and new drugs directed to γ-tubulin that may offer a viable alternative to microtubule-targeting agents currently used in cancer chemotherapy. Abstract In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.
Collapse
|
11
|
The γ-tubulin meshwork assists in the recruitment of PCNA to chromatin in mammalian cells. Commun Biol 2021; 4:767. [PMID: 34158617 PMCID: PMC8219688 DOI: 10.1038/s42003-021-02280-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Changes in the location of γ-tubulin ensure cell survival and preserve genome integrity. We investigated whether the nuclear accumulation of γ-tubulin facilitates the transport of proliferating cell nuclear antigen (PCNA) between the cytosolic and the nuclear compartment in mammalian cells. We found that the γ-tubulin meshwork assists in the recruitment of PCNA to chromatin. Also, decreased levels of γ-tubulin reduce the nuclear pool of PCNA. In addition, the γ-tubulin C terminus encodes a PCNA-interacting peptide (PIP) motif, and a γ-tubulin–PIP-mutant affects the nuclear accumulation of PCNA. In a cell-free system, PCNA and γ-tubulin formed a complex. In tumors, there is a significant positive correlation between TUBG1 and PCNA expression. Thus, we report a novel mechanism that constitutes the basis for tumor growth by which the γ-tubulin meshwork maintains indefinite proliferation by acting as an opportune scaffold for the transport of PCNA from the cytosol to the chromatin. Corvaisier et al discover that γ-tubulin and replication protein PCNA forms a complex and that this facilitates recruitment of PCNA to chromatin both during cell division and during the DSB repair response. They identify a PCNA binding motif in γ-tubulin, which when mutated affects replication fork progression, providing insights into the role of the nuclear γ-tubulin meshwork.
Collapse
|
12
|
Abstract
Members of the tubulin superfamily are GTPases; the activities of GTPases are necessary for life. The members of the tubulin superfamily are the constituents of the microtubules and the γ-tubulin meshwork. Mutations in members of the tubulin superfamily are involved in developmental brain disorders, and tubulin activities are the target for various chemotherapies. The intricate functions (game) of tubulins depend on the activities of the GTP-binding domain of α-, β-, and γ-tubulin. This review compares the GTP-binding domains of γ-tubulin, α-tubulin, and β-tubulin and, based on their similarities, recapitulates the known functions and the impact of the γ-tubulin GTP-binding domain in the regulation of the γ-tubulin meshwork and cellular homeostasis.
Collapse
Affiliation(s)
- Maria Alvarado Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden
| |
Collapse
|
13
|
Corvaisier M, Alvarado-Kristensson M. Non-Canonical Functions of the Gamma-Tubulin Meshwork in the Regulation of the Nuclear Architecture. Cancers (Basel) 2020; 12:cancers12113102. [PMID: 33114224 PMCID: PMC7690915 DOI: 10.3390/cancers12113102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The appearance of a cell is connected to its function. For example, the fusiform of smooth muscle cells is adapted to facilitate muscle contraction, the lobed nucleus in white blood cells assists with the migratory behavior of these immune cells, and the condensed nucleus in sperm aids in their swimming efficiency. Thus, changes in appearance have been used for decades by doctors as a diagnostic method for human cancers. Here, we summarize our knowledge of how a cell maintains the shape of the nuclear compartment. Specifically, we discuss the role of a novel protein meshwork, the gamma-tubulin meshwork, in the regulation of nuclear morphology and as a therapeutic target against cancer. Abstract The nuclear architecture describes the organization of the various compartments in the nucleus of eukaryotic cells, where a plethora of processes such as nucleocytoplasmic transport, gene expression, and assembly of ribosomal subunits occur in a dynamic manner. During the different phases of the cell cycle, in post-mitotic cells and after oncogenic transformation, rearrangements of the nuclear architecture take place, and, among other things, these alterations result in reorganization of the chromatin and changes in gene expression. A member of the tubulin family, γtubulin, was first identified as part of a multiprotein complex that allows nucleation of microtubules. However, more than a decade ago, γtubulin was also characterized as a nuclear protein that modulates several crucial processes that affect the architecture of the nucleus. This review presents the latest knowledge regarding changes that arise in the nuclear architecture of healthy cells and under pathological conditions and, more specifically, considers the particular involvement of γtubulin in the modulation of the biology of the nuclear compartment.
Collapse
|
14
|
Rebane-Klemm E, Truu L, Reinsalu L, Puurand M, Shevchuk I, Chekulayev V, Timohhina N, Tepp K, Bogovskaja J, Afanasjev V, Suurmaa K, Valvere V, Kaambre T. Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps. Cancers (Basel) 2020; 12:cancers12040815. [PMID: 32231083 PMCID: PMC7226330 DOI: 10.3390/cancers12040815] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to characterize the ATP-synthesis by oxidative phosphorylation in colorectal cancer (CRC) and premalignant colon polyps in relation to molecular biomarkers KRAS and BRAF. This prospective study included 48 patients. Resected colorectal polyps and postoperative CRC tissue with adjacent normal tissue (control) were collected. Patients with polyps and CRC were divided into three molecular groups: KRAS mutated, BRAF mutated and KRAS/BRAF wild-type. Mitochondrial respiration in permeabilized tissue samples was observed using high resolution respirometry. ADP-activated respiration rate (Vmax) and an apparent affinity of mitochondria to ADP, which is related to mitochondrial outer membrane (MOM) permeability, were determined. Clear differences were present between molecular groups. KRAS mutated CRC group had lower Vmax values compared to wild-type; however, the Vmax value was higher than in the control group, while MOM permeability did not change. This suggests that KRAS mutation status might be involved in acquiring oxidative phenotype. KRAS mutated polyps had higher Vmax values and elevated MOM permeability as compared to the control. BRAF mutated CRC and polyps had reduced respiration and altered MOM permeability, indicating a glycolytic phenotype. To conclude, prognostic biomarkers KRAS and BRAF are likely related to the metabolic phenotype in CRC and polyps. Assessment of the tumor mitochondrial ATP synthesis could be a potential component of patient risk stratification.
Collapse
Affiliation(s)
- Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
- Correspondence:
| | - Laura Truu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
| | - Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Jelena Bogovskaja
- Clinic of Diagnostics at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Vladimir Afanasjev
- Clinic of Surgery at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Külliki Suurmaa
- Department of Gastroenterology, the West Tallinn Central Hospital, Paldiski mnt 68, 10617 Tallinn, Estonia;
| | - Vahur Valvere
- Oncology and Haematology Clinic at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| |
Collapse
|
15
|
Alvarado-Kristensson M. Choreography of the centrosome. Heliyon 2020; 6:e03238. [PMID: 31989056 PMCID: PMC6970175 DOI: 10.1016/j.heliyon.2020.e03238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
More than a century ago, the centrosome was discovered and described as “the true division organ of the cell”. Electron microscopy revealed that a centrosome is an amorphous structure or pericentriolar protein matrix that surrounds a pair of well-organized centrioles. Today, the importance of the centrosome as a microtubule-organizing center and coordinator of the mitotic spindle is questioned, because centrioles are absent in up to half of all known eukaryotic species, and various mechanisms for acentrosomal microtubule nucleation have been described. This review recapitulates the known functions of centrosome movements in cellular homeostasis and discusses knowledge gaps in this field.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, SE-20502, Sweden
| |
Collapse
|
16
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
17
|
Alvarado-Kristensson M, Rosselló CA. The Biology of the Nuclear Envelope and Its Implications in Cancer Biology. Int J Mol Sci 2019; 20:E2586. [PMID: 31137762 PMCID: PMC6566445 DOI: 10.3390/ijms20102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The formation of the nuclear envelope and the subsequent compartmentalization of the genome is a defining feature of eukaryotes. Traditionally, the nuclear envelope was purely viewed as a physical barrier to preserve genetic material in eukaryotic cells. However, in the last few decades, it has been revealed to be a critical cellular component in controlling gene expression and has been implicated in several human diseases. In cancer, the relevance of the cell nucleus was first reported in the mid-1800s when an altered nuclear morphology was observed in tumor cells. This review aims to give a current and comprehensive view of the role of the nuclear envelope on cancer first by recapitulating the changes of the nuclear envelope during cell division, second, by reviewing the role of the nuclear envelope in cell cycle regulation, signaling, and the regulation of the genome, and finally, by addressing the nuclear envelope link to cell migration and metastasis and its use in cancer prognosis.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain.
- Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain.
| |
Collapse
|
18
|
Chumová J, Kourová H, Trögelová L, Halada P, Binarová P. Microtubular and Nuclear Functions of γ-Tubulin: Are They LINCed? Cells 2019; 8:cells8030259. [PMID: 30893853 PMCID: PMC6468392 DOI: 10.3390/cells8030259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
γ-Tubulin is a conserved member of the tubulin superfamily with a function in microtubule nucleation. Proteins of γ-tubulin complexes serve as nucleation templates as well as a majority of other proteins contributing to centrosomal and non-centrosomal nucleation, conserved across eukaryotes. There is a growing amount of evidence of γ-tubulin functions besides microtubule nucleation in transcription, DNA damage response, chromatin remodeling, and on its interactions with tumor suppressors. However, the molecular mechanisms are not well understood. Furthermore, interactions with lamin and SUN proteins of the LINC complex suggest the role of γ-tubulin in the coupling of nuclear organization with cytoskeletons. γ-Tubulin that belongs to the clade of eukaryotic tubulins shows characteristics of both prokaryotic and eukaryotic tubulins. Both human and plant γ-tubulins preserve the ability of prokaryotic tubulins to assemble filaments and higher-order fibrillar networks. γ-Tubulin filaments, with bundling and aggregating capacity, are suggested to perform complex scaffolding and sequestration functions. In this review, we discuss a plethora of γ-tubulin molecular interactions and cellular functions, as well as recent advances in understanding the molecular mechanisms behind them.
Collapse
Affiliation(s)
- Jana Chumová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Hana Kourová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Lucie Trögelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavla Binarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
19
|
Puurand M, Tepp K, Timohhina N, Aid J, Shevchuk I, Chekulayev V, Kaambre T. Tubulin βII and βIII Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells 2019; 8:cells8030239. [PMID: 30871176 PMCID: PMC6468622 DOI: 10.3390/cells8030239] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
In recent decades, there have been several models describing the relationships between the cytoskeleton and the bioenergetic function of the cell. The main player in these models is the voltage-dependent anion channel (VDAC), located in the mitochondrial outer membrane. Most metabolites including respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. At the same time, high-energy phosphates are channeled out and directed to cellular energy transfer networks. Regulation of these energy fluxes is controlled by β-tubulin, bound to VDAC. It is also thought that β-tubulin‒VDAC interaction modulates cellular energy metabolism in cancer, e.g., switching from oxidative phosphorylation to glycolysis. In this review we focus on the described roles of unpolymerized αβ-tubulin heterodimers in regulating VDAC permeability for adenine nucleotides and cellular bioenergetics. We introduce the Mitochondrial Interactosome model and the function of the βII-tubulin subunit in this model in muscle cells and brain synaptosomes, and also consider the role of βIII-tubulin in cancer cells.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Jekaterina Aid
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| |
Collapse
|
20
|
Rosselló CA, Lindström L, Eklund G, Corvaisier M, Kristensson MA. γ-Tubulin⁻γ-Tubulin Interactions as the Basis for the Formation of a Meshwork. Int J Mol Sci 2018; 19:ijms19103245. [PMID: 30347727 PMCID: PMC6214090 DOI: 10.3390/ijms19103245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
In cytoplasm, protein γ-tubulin joins with various γ-tubulin complex proteins (GCPs) to form a heterotetramer γ-tubulin small complex (γ-TuSC) that can grow into a ring-shaped structure called the γ-tubulin ring complex (γ-TuRC). Both γ-TuSC and γ-TuRC are required for microtubule nucleation. Recent knowledge on γ-tubulin with regard to its cellular functions beyond participation in its creation of microtubules suggests that this protein forms a cellular meshwork. The present review summarizes the recognized functions of γ-tubulin and aims to unite the current views on this protein.
Collapse
Affiliation(s)
- Catalina Ana Rosselló
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Greta Eklund
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Matthieu Corvaisier
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Maria Alvarado Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| |
Collapse
|
21
|
Alvarado-Kristensson M. γ-tubulin as a signal-transducing molecule and meshwork with therapeutic potential. Signal Transduct Target Ther 2018; 3:24. [PMID: 30221013 PMCID: PMC6137058 DOI: 10.1038/s41392-018-0021-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/23/2018] [Accepted: 05/06/2018] [Indexed: 01/05/2023] Open
Abstract
Knowledge of γ-tubulin is increasing with regard to the cellular functions of this protein beyond its participation in microtubule nucleation. γ-Tubulin expression is altered in various malignancies, and changes in the TUBG1 gene have been found in patients suffering from brain malformations. This review recapitulates the known functions of γ-tubulin in cellular homeostasis and discusses the possible influence of the protein on disease development and cancer.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502 Sweden
| |
Collapse
|