1
|
Tao Y, Wang S, Li X, Jin L, Liu C, Jiao K, Li X, Cheng Y, Xu K, Zhou X, Wei X. Identification of disulfidptosis-related genes and subgroups in spinal cord injury. Spinal Cord 2025:10.1038/s41393-025-01081-1. [PMID: 40319145 DOI: 10.1038/s41393-025-01081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
STUDY DESIGN Bioinformatics analysis and experimental validation study. OBJECTIVES To investigate the role and expression patterns of disulfidptosis-related genes in spinal cord injury (SCI), identify potential pivotal genes, and explore possible therapeutic targets. SETTING Shanghai, China. METHODS Data acquisition and pre-processing: Screened 27 disulfidptosis-related genes based on literature and downloaded RNA-sequencing data of ASCI patients from GEO database (GSE151371); Identification of differentially expressed genes (DEGs): Used R package "limma" for differential gene expression analysis between ASCI samples and normal controls; Evaluating immune cell infiltration: Employed ssGSEA algorithm and CIBERSORT to determine immune cell abundance; Identification and functional verification of key genes: Intersected disulfidptosis-related genes with DEGs, and used machine learning techniques (Random Forest, Lasso, Support Vector Machine) to identify hub genes. Validated hub genes expression by real-time PCR; Construction of a diagnostic model: Developed a backpropagation neural network clinical prediction model based on hub genes and clinical features, and evaluated its performance using ROC curve. 6. Subcluster analysis: Performed consensus cluster analysis of ASCI samples and hub genes, and used GSVA to elucidate functional differences between subgroups. RESULTS Identified 7764 DEGs in ASCI, with GO and KEGG enrichment in inflammation and autophagy-related pathways; Found differences in immune cell infiltration between ASCI and control groups, and correlation between immune cells and DRGs; Determined seven hub genes (MYL6, NUBPL, CYFIP1, IQGAP1, FLNB, SLC7A11, CD2AP) through machine learning; Validated the expression of hub genes by qRT-PCR; Constructed a clinical diagnostic model with good predictive accuracy (overall dataset accuracy of 83.3%); Identified two subtypes of ASCI based on hub genes, with different immune infiltration and pathway activity. CONCLUSION Disulfidptosis is closely related to spinal cord injury. The identified hub genes and subtypes provide new insights for biomarker and therapeutic target research. The diagnostic model has potential for clinical application, but further studies are needed due to limitations such as small sample size. SPONSORSHIP This study was supported in part by the project of Youth Scientific and Technological Talents of PLA (2020QN06125), Changhong Talent Project in First affiliated hospital of Navy Medical University (Wei Xianzhao) and Basic Medical Research Project in First affiliated hospital of Navy Medical University (2023PY17). I want to reiterate that there is no prior publication of figures or tables and no conflict of interest in the submission of this manuscript. The graphical abstract is divided into two parts. The upper section sequentially illustrates the occurrence of disulfidptosis and changes in the immune microenvironment in the human body after SCI. The lower section displays the construction of a diagnostic model for SCI through the detection of changes in disulfidptosis-related genes, combined with patient clinical information.
Collapse
Affiliation(s)
- Ye Tao
- Naval Medical University, Shanghai, China
| | | | - Xiongfei Li
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Letian Jin
- Hangzhou Medical College, Hangzhou, China
| | - Chen Liu
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Kun Jiao
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Xiaoyu Li
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Yajun Cheng
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Kehan Xu
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| | - Xiaoyi Zhou
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| | - Xianzhao Wei
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| |
Collapse
|
2
|
Acebedo AR, Yamada G, Alcantara MC, Raga DD, Sato T, Nishinakamura R, Suzuki K. Sall1 regulates microtubule acetylation in mesenchymal cells during mouse urethral development. Cells Dev 2025:204027. [PMID: 40306366 DOI: 10.1016/j.cdev.2025.204027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Male embryonic external genitalia (eExG) undergo sexually dimorphic urethral development in response to androgen signaling (urethral masculinization). Whereas androgen is an essential masculinization factor for eExG, the specific molecular and cellular mechanisms are still unclear. Sall1 is a transcription factor that has been linked to the congenital disease Townes-Brocks syndrome, which includes anorectal and urogenital malformations. Currently, the functional role of Sall1 for normal urethral development is still unclear. In this study, we show that Sall1 is required to regulate proper microtubule acetylation to facilitate mesenchymal cell migration during urethral masculinization of mouse eExG. Mutant male mice with loss of function of mesenchymal Sall1 exhibited severe urethral defects, without prominent alteration of androgen signaling. Loss of Sall1 induced hyperacetylated microtubules in the eExG mesenchyme. Microtubule hyperacetylation resulted in defective fibrillar adhesions and fibronectin expression which impaired cell migration. Our findings reveal a novel mechanism of Sall1-regulated mesenchymal cell migration for urethral development. This mechanism for Sall1 may underlie the etiology of diseases such as Townes-Brocks syndrome.
Collapse
Affiliation(s)
- Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Institute of Biology, College of Science, University of the Philippines, Diliman, 1101 Quezon City, NCR, Philippines
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Department of Plastic and Reconstructive Surgery, Graduate School of Medicine Wakayama Medical University, Kimiidera, Wakayama 641-8509, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Dennis D Raga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tetsuya Sato
- Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
3
|
Amato CM, Yao HHC. New uses for an old technique: live imaging on the slice organ culture to study reproductive processes†. Biol Reprod 2024; 110:1055-1064. [PMID: 38315794 PMCID: PMC11180704 DOI: 10.1093/biolre/ioae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Reproductive processes are dynamic and involve extensive morphological remodeling and cell-cell interactions. Live imaging of organs enhances our understanding of how biological processes occur in real time. Slice culture is a type of organ culture where thick slices are collected from an organ and cultured for several days. Slice culture is a useful and easy-to-implement technique for live imaging of reproductive events at cellular resolution. Here we describe a pipeline of live imaging on slice culture to visualize the process of urethra closure in mouse embryonic penis as a proof of principle. In combination with genetic reporter mice, nuclear stains, and exposure experiments, we demonstrate the feasibility of slice culture on a reproductive organ. We also provide a step-by-step protocol and troubleshooting guide to facilitate the adoption of slice culture with live imaging in other reproductive organs. Lastly, we discuss potential utilities and experiments that could be implemented with slice culture in reproductive sciences.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Zhang Z, Zhang Q, Liu Z, Wang C, Chen H, Luo X, Shen L, Long C, Wei G, Liu X. Rab25 is involved in hypospadias via the β1 integrin/EGFR pathway. Exp Cell Res 2024; 436:113980. [PMID: 38401686 DOI: 10.1016/j.yexcr.2024.113980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Hypospadias is a common congenital abnormality of the penile. Abnormal regulation of critical genes involved in urethral development leads to hypospadias. We used the Rab25-/- mice and foreskin fibroblasts transfected with lentivirus in vitro and in vivo to investigate the role of Rab25 in hypospadias. METHODS The expression levels of various molecules in tissue samples and foreskin fibroblasts were confirmed using molecular biology methods (western blotting, PCR, immunohistochemistry, etc.). A scanning electron microscope (SEM) was used to visualize the external morphology of genital tubercles (GTs) of gestation day (GD) 18.5 male wild-type (WT) and Rab25-/- mice. RESULTS An expanded distal cleft and V-shaped urethral opening were observed in GD 18.5 Rab25-/- mice. We demonstrated that Rab25 mediated hypospadias through the β1 integrin/EGFR pathway. In addition, silencing Rab25 inhibited cell proliferation and migration and promoted apoptosis in the foreskin fibroblasts; Ki-67- and TUNEL-positive cells were mainly concentrated near the urethral seam. CONCLUSION These findings suggest that Rab25 plays an essential role in hypospadias by activation of β1 integrin/EGFR pathway, and Rab25 is a critical mediator of urethral seam formation in GD18.5 male fetal mice.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Qiang Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Zhenmin Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chong Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Hongsong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xingguo Luo
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xing Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, 400014, PR China.
| |
Collapse
|
5
|
Hashimoto D, Fujimoto K, Nakata M, Suzuki T, Kumegawa S, Ueda Y, Suzuki K, Asamura S, Yamada G. Developmental and functional roles of androgen and interactive signals for external genitalia and erectile tissues. Reprod Med Biol 2024; 23:e12611. [PMID: 39372370 PMCID: PMC11456227 DOI: 10.1002/rmb2.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Background Recent progress in molecular and signal analyses revealed essential functions of cellular signals including androgen and related growth factors such as Wnt regulators for external genitalia (ExG) development and its pathogenesis. Accumulated data showed their fundamental functions also for erectile tissue (corporal body) development and its abnormalities. The current review focuses on such signals from developmental and functional viewpoints. Methods Experimental strategies including histological and molecular signal analyses with conditional mutant mice for androgen and Wnt signals have been extensively utilized. Main findings Essential roles of androgen for the development of male-type ExG and urethral formation are shown. Wnt signals are associated with androgen for male-type ExG organogenesis. Androgen plays essential roles in the development of erectile tissue, the corporal body and it also regulates the duration time of erection. Wnt and other signals are essential for the regulation of mesenchymal cells of erectile tissue as shown by its conditional mutant mouse analyses. Stress signals, continuous erection, and the potential of lymphatic characteristics of the erectile vessels with sinusoids are also shown. Conclusion Reiterated involvement of androgen, Wnt, and other regulatory factors is stated for the development and pathogenesis of ExG and erectile tissues.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kota Fujimoto
- Department of UrologyUrological Science Institute, Yonsei University College of MedicineSeoulSouth Korea
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuya Suzuki
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shinji Kumegawa
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Yuko Ueda
- Department of UrologyOsaka Women's and Children's HospitalOsakaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
6
|
Amato CM, Xu X, Yao HHC. An extra-genital cell population contributes to urethra closure during mouse penis development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.564741. [PMID: 37986842 PMCID: PMC10659392 DOI: 10.1101/2023.11.09.564741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hypospadias, or incomplete closure of the urethra along the penis, is the second most common birth defect in the United States. We discovered a population of extra-genital mesenchymal cells that are essential for proper penile urethra closure in mouse embryos. This extra-genital population first appeared in the mesenchyme posterior to the hindlimb of the fetus after the onset of penis formation. These extra-genital cells, which transiently express a lineage marker Nr5a1, migrated centrally and colonized the penis bilateral to the urethra epithelium. Removal of the Nr5a1+ extra-genital cells, using a cell-type specific ablation model, resulted in severe hypospadias. The absence of extra-genital cells had the most significant impacts on another mesenchymal cells, the peri-urethra that were immediately adjacent to the Nr5a1+ extra-genital cells. Single cell mRNA sequencing revealed that the extra-genital cells extensively interact with the peri-urethra, particularly through Neuregulin 1, an epidermal Growth Factor (EGF) ligand. Disruption of Neuregulin 1 signaling in the ex-vivo slice culture system led to failure of urethra closure, recapitulating the phenotypes of extra-genital cell ablation. These results demonstrate that the Nr5a1+ extra-genital mesenchymal cells from outside of the fetal penis are indispensable for urethra closure through their interaction with the peri-urethra mesenchymal cells. This discovery provides a new entry point to understand the biology of penis formation and potential causes of hypospadias in humans.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, US
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Ma S, Wang D, Xie D. Identification of disulfidptosis-related genes and subgroups in Alzheimer's disease. Front Aging Neurosci 2023; 15:1236490. [PMID: 37600517 PMCID: PMC10436325 DOI: 10.3389/fnagi.2023.1236490] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Alzheimer's disease (AD), a common neurological disorder, has no effective treatment due to its complex pathogenesis. Disulfidptosis, a newly discovered type of cell death, seems to be closely related to the occurrence of various diseases. In this study, through bioinformatics analysis, the expression and function of disulfidptosis-related genes (DRGs) in Alzheimer's disease were explored. Methods Differential analysis was performed on the gene expression matrix of AD, and the intersection of differentially expressed genes and disulfidptosis-related genes in AD was obtained. Hub genes were further screened using multiple machine learning methods, and a predictive model was constructed. Finally, 97 AD samples were divided into two subgroups based on hub genes. Results In this study, a total of 22 overlapping genes were identified, and 7 hub genes were further obtained through machine learning, including MYH9, IQGAP1, ACTN4, DSTN, ACTB, MYL6, and GYS1. Furthermore, the diagnostic capability was validated using external datasets and clinical samples. Based on these genes, a predictive model was constructed, with a large area under the curve (AUC = 0.8847), and the AUCs of the two external validation datasets were also higher than 0.7, indicating the high accuracy of the predictive model. Using unsupervised clustering based on hub genes, 97 AD samples were divided into Cluster1 (n = 24) and Cluster2 (n = 73), with most hub genes expressed at higher levels in Cluster2. Immune infiltration analysis revealed that Cluster2 had a higher level of immune infiltration and immune scores. Conclusion A close association between disulfidptosis and Alzheimer's disease was discovered in this study, and a predictive model was established to assess the risk of disulfidptosis subtype in AD patients. This study provides new perspectives for exploring biomarkers and potential therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Shijia Ma
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Dan Wang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Daojun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
9
|
Acebedo AR, Alcantara MC, Nakanishi T, Ogawa T, Yamada G, Suzuki K. Exposure to the organophosphate pesticide fenitrothion directly induced defects in mouse embryonic external genitalia. Toxicol Sci 2022; 190:13-22. [PMID: 35951760 DOI: 10.1093/toxsci/kfac085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many industrial chemicals have been reported as anti-androgenic substances. Exposure to these substances represents a potential risk to human health, particularly to the development of reproductive organs such as embryonic external genitalia (eExG). Currently, there is a need for more assay systems that can elucidate the toxicological actions and mechanisms of endocrine disrupting chemicals (EDCs). In this study, we show that the eExG slice culture assay is useful for the evaluation of the differing modes of action of EDCs on urethra formation. We assessed the possible endocrine disrupting activity of three chemicals with reported anti-androgenic function, diazinon (DZN), dibutyl phthalate (DBP) and fenitrothion (FNT) on eExG slices. Exposure to FNT, but not DZN and DBP, induced defects of androgen-induced urethral masculinization and reduced expression of the androgen-target gene Mafb. Live imaging analyses showed that FNT treatment inhibited androgen-dependent MAFB induction within 12 hours. Furthermore, FNT-treated tissue slices showed reduced expression of the androgen receptor (AR). These results indicate that FNT disrupts androgen signaling by reduction of AR expression during androgen-induced eExG masculinization. The current study thus highlights the importance of animal models which allow for the effective assessment of tissue-specific endocrine-disrupting activity to further reveal the etiology of chemical-induced congenital anomalies.
Collapse
Affiliation(s)
- Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takehiko Ogawa
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
10
|
Amato CM, Yao HHC, Zhao F. One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Front Endocrinol (Lausanne) 2022; 13:910964. [PMID: 35846302 PMCID: PMC9280649 DOI: 10.3389/fendo.2022.910964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.
Collapse
Affiliation(s)
- Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C. Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Kajimoto M, Suzuki K, Ueda Y, Fujimoto K, Takeo T, Nakagata N, Hyuga T, Isono K, Yamada G. Androgen/Wnt/β-catenin signal axis augments cell proliferation of the mouse erectile tissue, corpus cavernosum. Congenit Anom (Kyoto) 2022; 62:123-133. [PMID: 35318743 DOI: 10.1111/cga.12465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
The murine penile erectile tissues including corpus cavernosum (CC) are composed of blood vessels, smooth muscle, and connective tissue, showing marked sexual differences. It has been known that the androgens are required for sexually dimorphic organogenesis. It is however unknown about the features of androgen signaling during mouse CC development. It is also unclear how androgen-driven downstream factors are involved such processes. In the current study, we analyzed the onset of sexually dimorphic CC formation based on histological analyses, the dynamics of androgen receptor (AR) expression, and regulation of cell proliferation. Of note, we identified Dickkopf-related protein 2 (Dkk2), an inhibitor of β-catenin signaling, was predominantly expressed in female CC compared with male. Furthermore, administration of androgens resulted in activation of β-catenin signaling. We have found the Sox9 gene, one of the essential markers for chondrocyte, was specifically expressed in the developing CC. Hence, we utilized CC-specific, Sox9 CreERT2 , β-catenin conditional mutant mice. Such mutant mice showed defective cell proliferation. Furthermore, introduction of activated form of β-catenin mutation (gain of function mutation for Wnt/β-catenin signaling) in CC induced augmented cell proliferation. Altogether, we revealed androgen-Wnt/β-catenin signal dependent cell proliferation was essential for sexually dimorphic CC formation. These findings open new avenues for understanding developmental mechanisms of androgen-dependent cell proliferation during sexual differentiation.
Collapse
Affiliation(s)
- Mizuki Kajimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ueda
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Pediatric Urology, Jichi Medical University, Children's Medical Center Tochigi, Tochigi, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
12
|
Kong X, Liu Z, Long C, Shen L, Liu X, Wei G. Repression of Mafb promotes foreskin fibroblast proliferation through upregulation of CDK2, cyclin E and PCNA. Andrologia 2022; 54:e14411. [PMID: 35220623 DOI: 10.1111/and.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Xiaoyan Kong
- Department of Urology Children’s Hospital of Chongqing Medical University Chongqing China
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
- Department of Imaging Chengdu Second People's Hospital Chengdu Sichuan China
| | - Zhenmin Liu
- Department of Urology Children’s Hospital of Chongqing Medical University Chongqing China
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Chunlan Long
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Lianju Shen
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Xing Liu
- Department of Urology Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Guanghui Wei
- Department of Urology Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
13
|
Alcantara MC, Suzuki K, Acebedo AR, Sakamoto Y, Nishita M, Minami Y, Kikuchi A, Yamada G. Stage-dependent function of Wnt5a during male external genitalia development. Congenit Anom (Kyoto) 2021; 61:212-219. [PMID: 34255394 DOI: 10.1111/cga.12438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022]
Abstract
External genitalia development in mice involves multiple developmental processes under the regulation of various signaling pathways. Wnt5a, one of the major Wnt ligands, is a crucial developmental regulator of outgrowing organs such as the limb, the mandible, and the external genitalia. Defects in Wnt5a signaling have been linked to Robinow syndrome, a genetic disorder in which male patients manifest a micropenis and defective urethral tube formation. Whereas Wnt5a is required for cell proliferation during embryonic external genitalia outgrowth, its role for urethral tube formation has yet to be understood. Here, we show that Wnt5a contributes to urethral tube formation as well as external genitalia outgrowth. Wnt5a is expressed in the embryonic external genitalia mesenchyme, and mesenchymal-specific conditional Wnt5a knockout mice resulted in hypospadias-like urethral defects. Early deletion of Wnt5a at E10.5 showed severe defects in both external genitalia outgrowth and urethral tube formation, along with reduced cell proliferation. The severe urethral tube defect persisted during later timing deletion of Wnt5a (E13.5). Further analyses revealed that loss of Wnt5a disrupted cell polarity and led to a reduction of the phosphorylated myosin light chain and the focal adhesion protein, vinculin. Altogether, these results suggest that Wnt5a coordinates cell proliferation and directed cell migration in a stage-dependent manner during male external genitalia development. Furthermore, Wnt5a may regulate cell polarity, focal adhesion formation, and cell contractility, leading to directed cell migration during male-type urethral formation in a manner that has not been reported in other organ fusion events.
Collapse
Affiliation(s)
- Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuki Sakamoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Michiru Nishita
- Department of Biochemistry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuhiro Minami
- Faculty of Medical Sciences, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
14
|
Sexual fate of murine external genitalia development: Conserved transcriptional competency for male-biased genes in both sexes. Proc Natl Acad Sci U S A 2021; 118:2024067118. [PMID: 34074765 DOI: 10.1073/pnas.2024067118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.
Collapse
|
15
|
Hashimoto D, Kajimoto M, Ueda Y, Hyuga T, Fujimoto K, Inoue S, Suzuki K, Kataoka T, Kimura K, Yamada G. 3D reconstruction and histopathological analyses on murine corporal body. Reprod Med Biol 2021; 20:199-207. [PMID: 33850453 PMCID: PMC8022099 DOI: 10.1002/rmb2.12369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Erectile dysfunction (ED) is one of the increasing diseases with aging society. The basis of ED derived from local penile abnormality is poorly understood because of the complex three-dimensional (3D) distribution of sinusoids in corpus cavernosum (CC). Understanding the 3D histological structure of penis is thus necessary. Analyses on the status of regulatory signals for such abnormality are also performed. METHODS To analyze the 3D structure of sinusoid, 3D reconstruction from serial sections of murine CC were performed. Histological analyses between young (2 months old) and aged (14 months old) CC were performed. As for chondrogenic signaling status of aged CC, SOX9 and RBPJK staining was examined. RESULTS Sinusoids prominently developed in the outer regions of CC adjacent to tunica albuginea. Aged CC samples contained ectopic chondrocytes in such regions. Associating with the appearance of chondrocytes, the expression of SOX9, chondrogenic regulator, was upregulated. The expression of RBPJK, one of the Notch signal regulators, was downregulated in the aged CC. CONCLUSIONS Prominent sinusoids distribute in the outer region of CC which may possess important roles for erection. A possibility of ectopic chondrogenesis induced by alteration of SOX9/Notch signaling with aging is indicated.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Mizuki Kajimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Yuko Ueda
- Department of UrologyWakayama Medical UniversityWakayamaJapan
| | - Taiju Hyuga
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Kota Fujimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Saaya Inoue
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Tomoya Kataoka
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
| | - Kazunori Kimura
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
- Department of Hospital PharmacyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Gen Yamada
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
16
|
Hashimoto D, Hirashima T, Yamamura H, Kataoka T, Fujimoto K, Hyuga T, Yoshiki A, Kimura K, Kuroki S, Tachibana M, Suzuki K, Yamamoto N, Morioka S, Sasaki T, Yamada G. Dynamic erectile responses of a novel penile organ model utilizing TPEM†. Biol Reprod 2021; 104:875-886. [PMID: 33511393 DOI: 10.1093/biolre/ioab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Male penis is required to become erect during copulation. In the upper (dorsal) part of penis, the erectile tissue termed corpus cavernosum (CC) plays fundamental roles for erection by regulating the inner blood flow. When blood flows into the CC, the microvascular complex termed sinusoidal space is reported to expand during erection. A novel in vitro explant system to analyze the dynamic erectile responses during contraction/relaxation is established. The current data show regulatory contraction/relaxation processes induced by phenylephrine (PE) and nitric oxide (NO) donor mimicking dynamic erectile responses by in vitro CC explants. Two-photon excitation microscopy (TPEM) observation shows the synchronous movement of sinusoidal space and the entire CC. By taking advantages of the CC explant system, tadalafil (Cialis) was shown to increase sinusoidal relaxation. Histopathological changes have been generally reported associating with erection in several pathological conditions. Various stressed statuses have been suggested to occur in the erectile responses by previous studies. The current CC explant model enables to analyze such conditions through directly manipulating CC in the repeated contraction/relaxation processes. Expression of oxidative stress marker and contraction-related genes, Hypoxia-inducible factor 1-alpha (Hif1a), glutathione peroxidase 1 (Gpx1), Ras homolog family member A (RhoA), and Rho-associated protein kinase (Rock), was significantly increased in such repeated contraction/relaxation. Altogether, it is suggested that the system is valuable for analyzing structural changes and physiological responses to several regulators in the field of penile medicine.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shunsuke Kuroki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Nobuhiko Yamamoto
- Cellular and Molecular Neurobiology Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shin Morioka
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takehiko Sasaki
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
17
|
Regulatory roles of epithelial-mesenchymal interaction (EMI) during early and androgen dependent external genitalia development. Differentiation 2019; 110:29-35. [PMID: 31590136 DOI: 10.1016/j.diff.2019.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Development of external genitalia (ExG) has been a topic of long mystery in the field of organogenesis research. Early stage male and female of mouse embryos develop a common genital tubercle (GT) in the perineum whose outgrowth extends distally from the posterior cloacal regions. Concomitant with GT outgrowth, the cloaca is divided into urogenital sinus and anorectum by urorectal septum (URS) internally. The outgrowth of the GT is associated with the formation of endodermal epithelial urethral plate (UP) attached to the ventral epidermis of the GT. Such a common developmental phase is observed until around embryonic day 15.5 (E15.5) morphologically in mouse embryogenesis. Various growth factor genes, such as Fibroblast growth factor (Fgf) and Wnt genes are expressed and function during GT formation. Since the discovery of key growth factor signals and several regulatory molecules, elucidation of their functions has been achieved utilizing mouse developmental models, conditional gene knockout mouse and in vitro culture. Analyses on the phenotypes of such mouse models have revealed that several growth factor families play fundamental roles in ExG organogenesis based on the epithelial-mesenchymal interaction (EMI). More recently, EMI between developing urethral epithelia and its bilateral mesenchyme of later stages is also reported during subsequent stage of androgen-dependent male-type urethral formation in the mouse embryo. Mafb, belonging to AP-1 family and a key androgen-responsive mesenchymal gene, is identified and starts to be expressed around E14.5 when masculinization of the urethra is initiated. Mesenchymal cell condensation and migration, which are regulated by nonmuscle myosin, are shown to be essential process for masculinization. Hence, studies on EMI at various embryonic stages are important not only for early but also for subsequent masculinization of the urethra. In this review, a dynamic mode of EMI for both early and late phases of ExG development is discussed.
Collapse
|