1
|
Kopfová L, Tkadlec J. Colonization times in Moran process on graphs. PLoS Comput Biol 2025; 21:e1012868. [PMID: 40324007 PMCID: PMC12052132 DOI: 10.1371/journal.pcbi.1012868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/10/2025] [Indexed: 05/07/2025] Open
Abstract
Moran Birth-death process is a standard stochastic process that is used to model natural selection in spatially structured populations. A newly occurring mutation that invades a population of residents can either fixate on the whole population or it can go extinct due to random drift. The duration of the process depends not only on the total population size n, but also on the spatial structure of the population. In this work, we consider the Moran process with a single type of individuals who invade and colonize an otherwise empty environment. Mathematically, this corresponds to the setting where the residents have zero reproduction rate, thus they never reproduce. The spatial structure is represented by a graph. We present two main contributions. First, in contrast to the Moran process in which residents do reproduce, we show that the colonization time is always at most a polynomial function of the population size n. Namely, we show that colonization always takes at most [Formula: see text] expected steps, and for each n, we identify the slowest graph where it takes exactly that many steps. Moreover, we establish a stronger bound of roughly [Formula: see text] steps for undirected graphs and an even stronger bound of roughly [Formula: see text] steps for so-called regular graphs. Second, we discuss various complications that one faces when attempting to measure fixation times and colonization times in spatially structured populations, and we propose to measure the real duration of the process, rather than counting the steps of the classic Moran process.
Collapse
Affiliation(s)
- Lenka Kopfová
- Computer Science Institute, Charles University, Prague, Czech Republic
- IST Austria, Klosterneuburg, Austria
| | - Josef Tkadlec
- Computer Science Institute, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Kuo YP, Hu J, Carja O. Clonal interference, genetic variation and the speed of evolution in structured populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639636. [PMID: 40027632 PMCID: PMC11870626 DOI: 10.1101/2025.02.22.639636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
When it comes to understanding the role that population structure plays in shaping rates of evolution, it is commonly accepted that interference between evolutionary innovations is more prevalent in structured populations compared to well-mixed, and that population structure reduces the rate of evolution, while simultaneously promoting maintenance of genetic variation. Prior models usually represent population structure using two or more connected demes or lattices with periodic boundary conditions. Fundamentally, the observed spatial evolutionary slow-down is rooted in the fact that these types of structures increase the time it takes for a selective sweep and therefore, increase the probability that multiple beneficial mutations will coexist and interfere. Here we show that systematically introducing more heterogeneity in population structure can reshape these prior conclusions and lead to a much wider range of observed evolutionary outcome, including increased rates of evolution. At a big picture level, our results showcase that the evolutionary effects of population structure crucially depend on the properties of the topology considered. Understanding these spatial properties is therefore requisite for making meaningful evolutionary comparisons across different topologies, for forming sensible null expectations about experimental or observational data or for developing an intuition for when well-mixed approximations, or approximations done using spatial models with a high degree of symmetry, might not apply.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jiewen Hu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Svoboda J, Chatterjee K. Density amplifiers of cooperation for spatial games. Proc Natl Acad Sci U S A 2024; 121:e2405605121. [PMID: 39642209 DOI: 10.1073/pnas.2405605121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/21/2024] [Indexed: 12/08/2024] Open
Abstract
Spatial games provide a simple and elegant mathematical model to study the evolution of cooperation in networks. In spatial games, individuals reside in vertices, adopt simple strategies, and interact with neighbors to receive a payoff. Depending on their own and neighbors' payoffs, individuals can change their strategy. The payoff is determined by the Prisoners' Dilemma, a classical matrix game, where players cooperate or defect. While cooperation is the desired behavior, defection provides a higher payoff for a selfish individual. There are many theoretical and empirical studies related to the role of the network in the evolution of cooperation. However, the fundamental question of whether there exist networks that for low initial cooperation rate ensure a high chance of fixation, i.e., cooperation spreads across the whole population, has remained elusive for spatial games with strong selection. In this work, we answer this fundamental question in the affirmative by presenting network structures that ensure high fixation probability for cooperators in the strong selection regime. Besides, our structures have many desirable properties: (a) they ensure the spread of cooperation even for a low initial density of cooperation and high temptation of defection, (b) they have constant degrees, and (c) the number of steps, until cooperation spreads, is at most quadratic in the size of the network.
Collapse
Affiliation(s)
- Jakub Svoboda
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | | |
Collapse
|
4
|
Devadhasan A, Kolodny O, Carja O. Competition for resources can reshape the evolutionary properties of spatial structure. PLoS Comput Biol 2024; 20:e1012542. [PMID: 39576832 PMCID: PMC11623808 DOI: 10.1371/journal.pcbi.1012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/06/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Many evolving ecosystems have spatial structures that can be conceptualized as networks, with nodes representing individuals or homogeneous subpopulations and links the patterns of spread between them. Prior models of evolution on networks do not take ecological niche differences and eco-evolutionary interplay into account. Here, we combine a resource competition model with evolutionary graph theory to study how heterogeneous topological structure shapes evolutionary dynamics under global frequency-dependent ecological interactions. We find that the addition of ecological competition for resources can produce a reversal of roles between amplifier and suppressor networks for deleterious mutants entering the population. We show that this effect is a nonlinear function of ecological niche overlap and discuss intuition for the observed dynamics using simulations and analytical approximations. We use these theoretical results together with spatial representations from imaging data to show that, for ductal carcinoma, where tumor growth is highly spatially constrained, with cells confined to a tree-like network of ducts, the topological structure can lead to higher rates of deleterious mutant hitchhiking with metabolic driver mutations, compared to tumors characterized by different spatial topologies.
Collapse
Affiliation(s)
- Anush Devadhasan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Oren Kolodny
- Department of Ecology, Evolution, and Behavior, E. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
5
|
Brewster DA, Nowak MA, Tkadlec J. Fixation times on directed graphs. PLoS Comput Biol 2024; 20:e1012299. [PMID: 39024375 PMCID: PMC11288448 DOI: 10.1371/journal.pcbi.1012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/30/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
Computing the rate of evolution in spatially structured populations is difficult. A key quantity is the fixation time of a single mutant with relative reproduction rate r which invades a population of residents. We say that the fixation time is "fast" if it is at most a polynomial function in terms of the population size N. Here we study fixation times of advantageous mutants (r > 1) and neutral mutants (r = 1) on directed graphs, which are those graphs that have at least some one-way connections. We obtain three main results. First, we prove that for any directed graph the fixation time is fast, provided that r is sufficiently large. Second, we construct an efficient algorithm that gives an upper bound for the fixation time for any graph and any r ≥ 1. Third, we identify a broad class of directed graphs with fast fixation times for any r ≥ 1. This class includes previously studied amplifiers of selection, such as Superstars and Metafunnels. We also show that on some graphs the fixation time is not a monotonically declining function of r; in particular, neutral fixation can occur faster than fixation for small selective advantages.
Collapse
Affiliation(s)
- David A. Brewster
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Josef Tkadlec
- Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States of America
- Computer Science Institute, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Kuo YP, Carja O. Evolutionary graph theory beyond single mutation dynamics: on how network-structured populations cross fitness landscapes. Genetics 2024; 227:iyae055. [PMID: 38639307 PMCID: PMC11151934 DOI: 10.1093/genetics/iyae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Spatially resolved datasets are revolutionizing knowledge in molecular biology, yet are under-utilized for questions in evolutionary biology. To gain insight from these large-scale datasets of spatial organization, we need mathematical representations and modeling techniques that can both capture their complexity, but also allow for mathematical tractability. Evolutionary graph theory utilizes the mathematical representation of networks as a proxy for heterogeneous population structure and has started to reshape our understanding of how spatial structure can direct evolutionary dynamics. However, previous results are derived for the case of a single new mutation appearing in the population and the role of network structure in shaping fitness landscape crossing is still poorly understood. Here we study how network-structured populations cross fitness landscapes and show that even a simple extension to a two-mutational landscape can exhibit complex evolutionary dynamics that cannot be predicted using previous single-mutation results. We show how our results can be intuitively understood through the lens of how the two main evolutionary properties of a network, the amplification and acceleration factors, change the expected fate of the intermediate mutant in the population and further discuss how to link these models to spatially resolved datasets of cellular organization.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA
| |
Collapse
|
7
|
Gao S, Liu Y, Wu B. The speed of neutral evolution on graphs. J R Soc Interface 2024; 21:20230594. [PMID: 38835245 PMCID: PMC11346635 DOI: 10.1098/rsif.2023.0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/02/2024] [Indexed: 06/06/2024] Open
Abstract
The speed of evolution on structured populations is crucial for biological and social systems. The likelihood of invasion is key for evolutionary stability. But it makes little sense if it takes long. It is far from known what population structure slows down evolution. We investigate the absorption time of a single neutral mutant for all the 112 non-isomorphic undirected graphs of size 6. We find that about three-quarters of the graphs have an absorption time close to that of the complete graph, less than one-third are accelerators, and more than two-thirds are decelerators. Surprisingly, determining whether a graph has a long absorption time is too complicated to be captured by the joint degree distribution. Via the largest sojourn time, we find that echo-chamber-like graphs, which consist of two homogeneous graphs connected by few sparse links, are likely to slow down absorption. These results are robust for large graphs, mutation patterns as well as evolutionary processes. This work serves as a benchmark for timing evolution with complex interactions, and fosters the understanding of polarization in opinion formation.
Collapse
Affiliation(s)
- Shun Gao
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| | - Yuan Liu
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| | - Bin Wu
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Kuo YP, Nombela-Arrieta C, Carja O. A theory of evolutionary dynamics on any complex population structure reveals stem cell niche architecture as a spatial suppressor of selection. Nat Commun 2024; 15:4666. [PMID: 38821923 PMCID: PMC11143212 DOI: 10.1038/s41467-024-48617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
How the spatial arrangement of a population shapes its evolutionary dynamics has been of long-standing interest in population genetics. Most previous studies assume a small number of demes or symmetrical structures that, most often, act as well-mixed populations. Other studies use network theory to study more heterogeneous spatial structures, however they usually assume small, regular networks, or strong constraints on the strength of selection considered. Here we build network generation algorithms, conduct evolutionary simulations and derive general analytic approximations for probabilities of fixation in populations with complex spatial structure. We build a unifying evolutionary theory across network families and derive the relevant selective parameter, which is a combination of network statistics, predictive of evolutionary dynamics. We also illustrate how to link this theory with novel datasets of spatial organization and use recent imaging data to build the cellular spatial networks of the stem cell niches of the bone marrow. Across a wide variety of parameters, we find these networks to be strong suppressors of selection, delaying mutation accumulation in this tissue. We also find that decreases in stem cell population size also decrease the suppression strength of the tissue spatial structure.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
García-Pintos LP. Limits on the evolutionary rates of biological traits. Sci Rep 2024; 14:11314. [PMID: 38760507 PMCID: PMC11101453 DOI: 10.1038/s41598-024-61872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
This paper focuses on the maximum speed at which biological evolution can occur. I derive inequalities that limit the rate of evolutionary processes driven by natural selection, mutations, or genetic drift. These rate limits link the variability in a population to evolutionary rates. In particular, high variances in the fitness of a population and of a quantitative trait allow for fast changes in the trait's average. In contrast, low variability makes a trait less susceptible to random changes due to genetic drift. The results in this article generalize Fisher's fundamental theorem of natural selection to dynamics that allow for mutations and genetic drift, via trade-off relations that constrain the evolutionary rates of arbitrary traits. The rate limits can be used to probe questions in various evolutionary biology and ecology settings. They apply, for instance, to trait dynamics within or across species or to the evolution of bacteria strains. They apply to any quantitative trait, e.g., from species' weights to the lengths of DNA strands.
Collapse
Affiliation(s)
- Luis Pedro García-Pintos
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Joint Center for Quantum Information and Computer Science and Joint Quantum Institute, NIST/University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
10
|
Svoboda J, Joshi S, Tkadlec J, Chatterjee K. Amplifiers of selection for the Moran process with both Birth-death and death-Birth updating. PLoS Comput Biol 2024; 20:e1012008. [PMID: 38551989 PMCID: PMC11006194 DOI: 10.1371/journal.pcbi.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/10/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Populations evolve by accumulating advantageous mutations. Every population has some spatial structure that can be modeled by an underlying network. The network then influences the probability that new advantageous mutations fixate. Amplifiers of selection are networks that increase the fixation probability of advantageous mutants, as compared to the unstructured fully-connected network. Whether or not a network is an amplifier depends on the choice of the random process that governs the evolutionary dynamics. Two popular choices are Moran process with Birth-death updating and Moran process with death-Birth updating. Interestingly, while some networks are amplifiers under Birth-death updating and other networks are amplifiers under death-Birth updating, so far no spatial structures have been found that function as an amplifier under both types of updating simultaneously. In this work, we identify networks that act as amplifiers of selection under both versions of the Moran process. The amplifiers are robust, modular, and increase fixation probability for any mutant fitness advantage in a range r ∈ (1, 1.2). To complement this positive result, we also prove that for certain quantities closely related to fixation probability, it is impossible to improve them simultaneously for both versions of the Moran process. Together, our results highlight how the two versions of the Moran process differ and what they have in common.
Collapse
Affiliation(s)
| | | | - Josef Tkadlec
- Computer Science Institute, Charles University, Prague, Czech Republic
| | | |
Collapse
|
11
|
Kuo YP, Carja O. Evolutionary graph theory beyond pairwise interactions: Higher-order network motifs shape times to fixation in structured populations. PLoS Comput Biol 2024; 20:e1011905. [PMID: 38489353 PMCID: PMC10971782 DOI: 10.1371/journal.pcbi.1011905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/27/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
To design population topologies that can accelerate rates of solution discovery in directed evolution problems or for evolutionary optimization applications, we must first systematically understand how population structure shapes evolutionary outcome. Using the mathematical formalism of evolutionary graph theory, recent studies have shown how to topologically build networks of population interaction that increase probabilities of fixation of beneficial mutations, at the expense, however, of longer fixation times, which can slow down rates of evolution, under elevated mutation rate. Here we find that moving beyond dyadic interactions in population graphs is fundamental to explain the trade-offs between probabilities and times to fixation of new mutants in the population. We show that higher-order motifs, and in particular three-node structures, allow the tuning of times to fixation, without changes in probabilities of fixation. This gives a near-continuous control over achieving solutions that allow for a wide range of times to fixation. We apply our algorithms and analytic results to two evolutionary optimization problems and show that the rate of solution discovery can be tuned near continuously by adjusting the higher-order topology of the population. We show that the effects of population structure on the rate of evolution critically depend on the optimization landscape and find that decelerators, with longer times to fixation of new mutants, are able to reach the optimal solutions faster than accelerators in complex solution spaces. Our results highlight that no one population topology fits all optimization applications, and we provide analytic and computational tools that allow for the design of networks suitable for each specific task.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Abbara A, Bitbol AF. Frequent asymmetric migrations suppress natural selection in spatially structured populations. PNAS NEXUS 2023; 2:pgad392. [PMID: 38024415 PMCID: PMC10667037 DOI: 10.1093/pnasnexus/pgad392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Natural microbial populations often have complex spatial structures. This can impact their evolution, in particular the ability of mutants to take over. While mutant fixation probabilities are known to be unaffected by sufficiently symmetric structures, evolutionary graph theory has shown that some graphs can amplify or suppress natural selection, in a way that depends on microscopic update rules. We propose a model of spatially structured populations on graphs directly inspired by batch culture experiments, alternating within-deme growth on nodes and migration-dilution steps, and yielding successive bottlenecks. This setting bridges models from evolutionary graph theory with Wright-Fisher models. Using a branching process approach, we show that spatial structure with frequent migrations can only yield suppression of natural selection. More precisely, in this regime, circulation graphs, where the total incoming migration flow equals the total outgoing one in each deme, do not impact fixation probability, while all other graphs strictly suppress selection. Suppression becomes stronger as the asymmetry between incoming and outgoing migrations grows. Amplification of natural selection can nevertheless exist in a restricted regime of rare migrations and very small fitness advantages, where we recover the predictions of evolutionary graph theory for the star graph.
Collapse
Affiliation(s)
- Alia Abbara
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. Evolutionary dynamics of mutants that modify population structure. J R Soc Interface 2023; 20:20230355. [PMID: 38016637 PMCID: PMC10684346 DOI: 10.1098/rsif.2023.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.
Collapse
Affiliation(s)
- Josef Tkadlec
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Computer Science Institute, Charles University, Prague, Czech Republic
| | - Kamran Kaveh
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Krishnendu Chatterjee
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Pattni K, Ali W, Broom M, Sharkey KJ. Eco-evolutionary dynamics in finite network-structured populations with migration. J Theor Biol 2023; 572:111587. [PMID: 37517517 DOI: 10.1016/j.jtbi.2023.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
We consider the effect of network structure on the evolution of a population. Models of this kind typically consider a population of fixed size and distribution. Here we consider eco-evolutionary dynamics where population size and distribution can change through birth, death and migration, all of which are separate processes. This allows complex interaction and migration behaviours that are dependent on competition. For migration, we assume that the response of individuals to competition is governed by tolerance to their group members, such that less tolerant individuals are more likely to move away due to competition. We look at the success of a mutant in the rare mutation limit for the complete, cycle and star networks. Unlike models with fixed population size and distribution, the distribution of the individuals per site is explicitly modelled by considering the dynamics of the population. This in turn determines the mutant appearance distribution for each network. Where a mutant appears impacts its success as it determines the competition it faces. For low and high migration rates the complete and cycle networks have similar mutant appearance distributions resulting in similar success levels for an invading mutant. A higher migration rate in the star network is detrimental for mutant success because migration results in a crowded central site where a mutant is more likely to appear.
Collapse
Affiliation(s)
- Karan Pattni
- Department of Mathematical Sciences, University of Liverpool, United Kingdom.
| | - Wajid Ali
- Department of Mathematical Sciences, University of Liverpool, United Kingdom
| | - Mark Broom
- Department of Mathematics, City, University of London, United Kingdom
| | - Kieran J Sharkey
- Department of Mathematical Sciences, University of Liverpool, United Kingdom
| |
Collapse
|
15
|
Sharma N, Yagoobi S, Traulsen A. Self-loops in evolutionary graph theory: Friends or foes? PLoS Comput Biol 2023; 19:e1011387. [PMID: 37656739 PMCID: PMC10501642 DOI: 10.1371/journal.pcbi.1011387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/14/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023] Open
Abstract
Evolutionary dynamics in spatially structured populations has been studied for a long time. More recently, the focus has been to construct structures that amplify selection by fixing beneficial mutations with higher probability than the well-mixed population and lower probability of fixation for deleterious mutations. It has been shown that for a structure to substantially amplify selection, self-loops are necessary when mutants appear predominately in nodes that change often. As a result, for low mutation rates, self-looped amplifiers attain higher steady-state average fitness in the mutation-selection balance than well-mixed populations. But what happens when the mutation rate increases such that fixation probabilities alone no longer describe the dynamics? We show that self-loops effects are detrimental outside the low mutation rate regime. In the intermediate and high mutation rate regime, amplifiers of selection attain lower steady-state average fitness than the complete graph and suppressors of selection. We also provide an estimate of the mutation rate beyond which the mutation-selection dynamics on a graph deviates from the weak mutation rate approximation. It involves computing average fixation time scaling with respect to the population sizes for several graphs.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sedigheh Yagoobi
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Arne Traulsen
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
Liu R, Masuda N. Fixation dynamics on hypergraphs. PLoS Comput Biol 2023; 19:e1011494. [PMID: 37751462 PMCID: PMC10558078 DOI: 10.1371/journal.pcbi.1011494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/06/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Hypergraphs have been a useful tool for analyzing population dynamics such as opinion formation and the public goods game occurring in overlapping groups of individuals. In the present study, we propose and analyze evolutionary dynamics on hypergraphs, in which each node takes one of the two types of different but constant fitness values. For the corresponding dynamics on conventional networks, under the birth-death process and uniform initial conditions, most networks are known to be amplifiers of natural selection; amplifiers by definition enhance the difference in the strength of the two competing types in terms of the probability that the mutant type fixates in the population. In contrast, we provide strong computational evidence that a majority of hypergraphs are suppressors of selection under the same conditions by combining theoretical and numerical analyses. We also show that this suppressing effect is not explained by one-mode projection, which is a standard method for expressing hypergraph data as a conventional network. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics, paving a way to studying fixation dynamics on higher-order networks including hypergraphs.
Collapse
Affiliation(s)
- Ruodan Liu
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America
- Computational and Data-Enabled Sciences and Engineering Program, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
17
|
Galić V, Anđelković V, Kravić N, Grčić N, Ledenčan T, Jambrović A, Zdunić Z, Nicolas S, Charcosset A, Šatović Z, Šimić D. Genetic diversity and selection signatures in a gene bank panel of maize inbred lines from Southeast Europe compared with two West European panels. BMC PLANT BIOLOGY 2023; 23:315. [PMID: 37316827 PMCID: PMC10265872 DOI: 10.1186/s12870-023-04336-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Southeast Europe (SEE) is a very important maize-growing region, comparable to the Corn belt region of the United States, with similar dent germplasm (dent by dent hybrids). Historically, this region has undergone several genetic material swaps, following the trends in the US, with one of the most significant swaps related to US aid programs after WWII. The imported accessions used to make double-cross hybrids were also mixed with previously adapted germplasm originating from several more distant OPVs, supporting the transition to single cross-breeding. Many of these materials were deposited at the Maize Gene Bank of the Maize Research Institute Zemun Polje (MRIZP) between the 1960s and 1980s. A part of this Gene Bank (572 inbreds) was genotyped with Affymetrix Axiom Maize Genotyping Array with 616,201 polymorphic variants. Data were merged with two other genotyping datasets with mostly European flint (TUM dataset) and dent (DROPS dataset) germplasm. The final pan-European dataset consisted of 974 inbreds and 460,243 markers. Admixture analysis showed seven ancestral populations representing European flint, B73/B14, Lancaster, B37, Wf9/Oh07, A374, and Iodent pools. Subpanel of inbreds with SEE origin showed a lack of Iodent germplasm, marking its historical context. Several signatures of selection were identified at chromosomes 1, 3, 6, 7, 8, 9, and 10. The regions under selection were mined for protein-coding genes and were used for gene ontology (GO) analysis, showing a highly significant overrepresentation of genes involved in response to stress. Our results suggest the accumulation of favorable allelic diversity, especially in the context of changing climate in the genetic resources of SEE.
Collapse
Affiliation(s)
- Vlatko Galić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia.
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia.
| | - Violeta Anđelković
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Natalija Kravić
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Nikola Grčić
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Tatjana Ledenčan
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
| | - Antun Jambrović
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Stéphane Nicolas
- GQE ‑ Le Moulon, INRAE, Univ. Paris‑Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif‑sur‑Yvette, 91190, France
| | - Alain Charcosset
- GQE ‑ Le Moulon, INRAE, Univ. Paris‑Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif‑sur‑Yvette, 91190, France
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Domagoj Šimić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| |
Collapse
|
18
|
Richter H. Spectral dynamics of guided edge removals and identifying transient amplifiers for death-Birth updating. J Math Biol 2023; 87:3. [PMID: 37284903 DOI: 10.1007/s00285-023-01937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/03/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The paper deals with two interrelated topics: (1) identifying transient amplifiers in an iterative process, and (2) analyzing the process by its spectral dynamics, which is the change in the graph spectra by edge manipulation. Transient amplifiers are networks representing population structures which shift the balance between natural selection and random drift. Thus, amplifiers are highly relevant for understanding the relationships between spatial structures and evolutionary dynamics. We study an iterative procedure to identify transient amplifiers for death-Birth updating. The algorithm starts with a regular input graph and iteratively removes edges until desired structures are achieved. Thus, a sequence of candidate graphs is obtained. The edge removals are guided by quantities derived from the sequence of candidate graphs. Moreover, we are interested in the Laplacian spectra of the candidate graphs and analyze the iterative process by its spectral dynamics. The results show that although transient amplifiers for death-Birth updating are generally rare, a substantial number of them can be obtained by the proposed procedure. The graphs identified share structural properties and have some similarity to dumbbell and barbell graphs. We analyze amplification properties of these graphs and also two more families of bell-like graphs and show that further transient amplifiers for death-Birth updating can be found. Finally, it is demonstrated that the spectral dynamics possesses characteristic features useful for deducing links between structural and spectral properties. These feature can also be taken for distinguishing transient amplifiers among evolutionary graphs in general.
Collapse
Affiliation(s)
- Hendrik Richter
- Faculty of Engineering, HTWK Leipzig University of Applied Sciences, Leipzig, Germany.
| |
Collapse
|
19
|
Nemati H, Kaveh K, Ejtehadi MR. Counterintuitive properties of evolutionary measures: A stochastic process study in cyclic population structures with periodic environments. J Theor Biol 2023; 564:111436. [PMID: 36828246 DOI: 10.1016/j.jtbi.2023.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
Local environmental interactions are a major factor in determining the success of a new mutant in structured populations. Spatial variations in the concentration of genotype-specific resources change the fitness of competing strategies locally and thus can drastically change the outcome of evolutionary processes in unintuitive ways. The question is how such local environmental variations in network population structures change the condition for selection and fixation probability of an advantageous (or deleterious) mutant. We consider linear graph structures and focus on the case where resources have a spatial periodic pattern. This is the simplest model with two parameters, length scale and fitness scales, representing heterogeneity. We calculate fixation probability and fixation times for a constant population birth-death process as fitness heterogeneity and period vary. Fixation probability is affected by not only the level of fitness heterogeneity but also spatial scale of resources variations set by period of distribution T. We identify conditions for which a previously a deleterious mutant (in a uniform environment) becomes beneficial as fitness heterogeneity is increased. We observe cases where the fixation probability of both mutant and resident types are more than their neutral value, 1/N, simultaneously. This coincides with exponential increase in time to fixation which points to potential coexistence of resident and mutant types. Finally, we discuss the effect of the 'fitness shift' where the fitness function of two types has a phase difference. We observe significant increases (or decreases) in the fixation probability of the mutant as a result of such phase shift.
Collapse
Affiliation(s)
- Hossein Nemati
- Sharif University of Technology, Physics Department, Iran
| | - Kamran Kaveh
- University of Washington, Department of Applied Mathematics, United States of America.
| | | |
Collapse
|
20
|
Seferbekova Z, Lomakin A, Yates LR, Gerstung M. Spatial biology of cancer evolution. Nat Rev Genet 2022; 24:295-313. [PMID: 36494509 DOI: 10.1038/s41576-022-00553-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
The natural history of cancers can be understood through the lens of evolution given that the driving forces of cancer development are mutation and selection of fitter clones. Cancer growth and progression are spatial processes that involve the breakdown of normal tissue organization, invasion and metastasis. For these reasons, spatial patterns are an integral part of histological tumour grading and staging as they measure the progression from normal to malignant disease. Furthermore, tumour cells are part of an ecosystem of tumour cells and their surrounding tumour microenvironment. A range of new spatial genomic, transcriptomic and proteomic technologies offers new avenues for the study of cancer evolution with great molecular and spatial detail. These methods enable precise characterizations of the tumour microenvironment, cellular interactions therein and micro-anatomical structures. In conjunction with spatial genomics, it emerges that tumours and microenvironments co-evolve, which helps explain observable patterns of heterogeneity and offers new routes for therapeutic interventions.
Collapse
|
21
|
Sharma N, Traulsen A. Suppressors of fixation can increase average fitness beyond amplifiers of selection. Proc Natl Acad Sci U S A 2022; 119:e2205424119. [PMID: 36067304 PMCID: PMC9478682 DOI: 10.1073/pnas.2205424119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Evolutionary dynamics on graphs has remarkable features: For example, it has been shown that amplifiers of selection exist that-compared to an unstructured population-increase the fixation probability of advantageous mutations, while they decrease the fixation probability of disadvantageous mutations. So far, the theoretical literature has focused on the case of a single mutant entering a graph-structured population, asking how the graph affects the probability that a mutant takes over a population and the time until this typically happens. For continuously evolving systems, the more relevant case is that mutants constantly arise in an evolving population. Typically, such mutations occur with a small probability during reproduction events. We thus focus on the low mutation rate limit. The probability distribution for the fitness in this process converges to a steady state at long times. Intuitively, amplifiers of selection are expected to increase the population's mean fitness in the steady state. Similarly, suppressors of selection are expected to decrease the population's mean fitness in the steady state. However, we show that another set of graphs, called suppressors of fixation, can attain the highest population mean fitness. The key reason behind this is their ability to efficiently reject deleterious mutants. This illustrates the importance of the deleterious mutant regime for the long-term evolutionary dynamics, something that seems to have been overlooked in the literature so far.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
22
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
23
|
Boussange V, Pellissier L. Eco-evolutionary model on spatial graphs reveals how habitat structure affects phenotypic differentiation. Commun Biol 2022; 5:668. [PMID: 35794362 PMCID: PMC9259634 DOI: 10.1038/s42003-022-03595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Differentiation mechanisms are influenced by the properties of the landscape over which individuals interact, disperse and evolve. Here, we investigate how habitat connectivity and habitat heterogeneity affect phenotypic differentiation by formulating a stochastic eco-evolutionary model where individuals are structured over a spatial graph. We combine analytical insights into the eco-evolutionary dynamics with numerical simulations to understand how the graph topology and the spatial distribution of habitat types affect differentiation. We show that not only low connectivity but also heterogeneity in connectivity promotes neutral differentiation, due to increased competition in highly connected vertices. Habitat assortativity, a measure of habitat spatial auto-correlation in graphs, additionally drives differentiation under habitat-dependent selection. While assortative graphs systematically amplify adaptive differentiation, they can foster or depress neutral differentiation depending on the migration regime. By formalising the eco-evolutionary and spatial dynamics of biological populations on graphs, our study establishes fundamental links between landscape features and phenotypic differentiation.
Collapse
Affiliation(s)
- Victor Boussange
- Swiss Federal Research Institute WSL, CH-8903, Birmensdorf, Switzerland.
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Loïc Pellissier
- Swiss Federal Research Institute WSL, CH-8903, Birmensdorf, Switzerland.
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, CH-8092, Zürich, Switzerland.
| |
Collapse
|
24
|
Li Z, Chen X, Yang HX, Szolnoki A. Game-theoretical approach for opinion dynamics on social networks. CHAOS (WOODBURY, N.Y.) 2022; 32:073117. [PMID: 35907745 DOI: 10.1063/5.0084178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Opinion dynamics on social networks have received considerable attentions in recent years. Nevertheless, just a few works have theoretically analyzed the condition in which a certain opinion can spread in the whole structured population. In this article, we propose an evolutionary game approach for a binary opinion model to explore the conditions for an opinion's spreading. Inspired by real-life observations, we assume that an agent's choice to select an opinion is not random but is based on a score rooted from both public knowledge and the interactions with neighbors. By means of coalescing random walks, we obtain a condition in which opinion A can be favored to spread on social networks in the weak selection limit. We find that the successfully spreading condition of opinion A is closely related to the basic scores of binary opinions, the feedback scores on opinion interactions, and the structural parameters including the edge weights, the weighted degrees of vertices, and the average degree of the network. In particular, when individuals adjust their opinions based solely on the public information, the vitality of opinion A depends exclusively on the difference of basic scores of A and B. When there are no negative (positive) feedback interactions between connected individuals, we find that the success of opinion A depends on the ratio of the obtained positive (negative) feedback scores of competing opinions. To complete our study, we perform computer simulations on fully connected, small-world, and scale-free networks, respectively, which support and confirm our theoretical findings.
Collapse
Affiliation(s)
- Zhifang Li
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Han-Xin Yang
- Department of Physics, Fuzhou University, Fuzhou 350108, China
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
25
|
Monk T, van Schaik A. Martingales and the fixation time of evolutionary graphs with arbitrary dimensionality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220011. [PMID: 35573040 PMCID: PMC9091843 DOI: 10.1098/rsos.220011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/01/2022] [Indexed: 05/03/2023]
Abstract
Evolutionary graph theory (EGT) investigates the Moran birth-death process constrained by graphs. Its two principal goals are to find the fixation probability and time for some initial population of mutants on the graph. The fixation probability of graphs has received considerable attention. Less is known about the distribution of fixation time. We derive clean, exact expressions for the full conditional characteristic functions (CCFs) of a close proxy to fixation and extinction times. That proxy is the number of times that the mutant population size changes before fixation or extinction. We derive these CCFs from a product martingale that we identify for an evolutionary graph with any number of partitions. The existence of that martingale only requires that the connections between those partitions are of a certain type. Our results are the first expressions for the CCFs of any proxy to fixation time on a graph with any number of partitions. The parameter dependence of our CCFs is explicit, so we can explore how they depend on graph structure. Martingales are a powerful approach to study principal problems of EGT. Their applicability is invariant to the number of partitions in a graph, so we can study entire families of graphs simultaneously.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
26
|
Zhong X, Huang G, Wang N, Fan Y, Di Z. Dynamical analysis of evolutionary public goods game on signed networks. CHAOS (WOODBURY, N.Y.) 2022; 32:023107. [PMID: 35232045 DOI: 10.1063/5.0070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
In evolutionary dynamics, the population structure and multiplayer interactions significantly impact the evolution of cooperation levels. Previous works mainly focus on the theoretical analysis of multiplayer games on regular networks or pairwise games on complex networks. Combining these two factors, complex networks and multiplayer games, we obtain the fixation probability and fixation time of the evolutionary public goods game in a structured population represented by a signed network. We devise a stochastic framework for estimating fixation probability with weak mistrust or strong mistrust mechanisms and develop a deterministic replicator equation to predict the expected density of cooperators when the system evolves to the equilibrium on a signed network. Specifically, the most interesting result is that negative edges diversify the cooperation steady state, evolving in three different patterns of fixed probability in Erdös-Rényi signed and Watts-Strogatz signed networks with the new "strong mistrust" mechanism.
Collapse
Affiliation(s)
- Xiaowen Zhong
- School of Systems Science, Beijing Normal University, 100875 Beijing, China
| | - Guo Huang
- School of Systems Science, Beijing Normal University, 100875 Beijing, China
| | - Ningning Wang
- School of Systems Science, Beijing Normal University, 100875 Beijing, China
| | - Ying Fan
- School of Systems Science, Beijing Normal University, 100875 Beijing, China
| | - Zengru Di
- School of Systems Science, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
27
|
Dehghani MA, Darooneh AH, Kohandel M. The network structure affects the fixation probability when it couples to the birth-death dynamics in finite population. PLoS Comput Biol 2021; 17:e1009537. [PMID: 34705822 PMCID: PMC8575310 DOI: 10.1371/journal.pcbi.1009537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/08/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
The study of evolutionary dynamics on graphs is an interesting topic for researchers in various fields of science and mathematics. In systems with finite population, different model dynamics are distinguished by their effects on two important quantities: fixation probability and fixation time. The isothermal theorem declares that the fixation probability is the same for a wide range of graphs and it only depends on the population size. This has also been proved for more complex graphs that are called complex networks. In this work, we propose a model that couples the population dynamics to the network structure and show that in this case, the isothermal theorem is being violated. In our model the death rate of a mutant depends on its number of neighbors, and neutral drift holds only in the average. We investigate the fixation probability behavior in terms of the complexity parameter, such as the scale-free exponent for the scale-free network and the rewiring probability for the small-world network. In this work, we examine an evolutionary model that considers the effect of competition between the mutated individuals for acquiring more resources. This competition has an effect on the death rate of mutants. The model purposes that the death rate of each mutant depends on the number of its neighbors, while the average death rate in the population is equal to one. The birth rate for all individuals is assumed to be the same and equal to one. This situation is called here the ‘neutral drift in average’. We study the dynamics of the model on complex networks to take into account the non-uniformity of the environment. The results show the fixation probability differs from the Moran model. For the construction of this model, we were biologically motivated by the avascular tumour, which consists of a population of normal and cancer cells. The cancer cells likely need more oxygen than normal cells. There is a competition between cells for consuming oxygen, and cancer cells are far more sensitive to the amount of oxygen in the environment than normal cells. This means the death rate of a cancer cell grows by increasing the number of its neighbors.
Collapse
Affiliation(s)
| | - Amir Hossein Darooneh
- Department of Physics, University of Zanjan, Zanjan, Iran
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
- * E-mail:
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| |
Collapse
|
28
|
Monk T, van Schaik A. Martingales and the characteristic functions of absorption time on bipartite graphs. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210657. [PMID: 34703620 PMCID: PMC8527206 DOI: 10.1098/rsos.210657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/15/2021] [Indexed: 05/14/2023]
Abstract
Evolutionary graph theory investigates how spatial constraints affect processes that model evolutionary selection, e.g. the Moran process. Its principal goals are to find the fixation probability and the conditional distributions of fixation time, and show how they are affected by different graphs that impose spatial constraints. Fixation probabilities have generated significant attention, but much less is known about the conditional time distributions, even for simple graphs. Those conditional time distributions are difficult to calculate, so we consider a close proxy to it: the number of times the mutant population size changes before absorption. We employ martingales to obtain the conditional characteristic functions (CCFs) of that proxy for the Moran process on the complete bipartite graph. We consider the Moran process on the complete bipartite graph as an absorbing random walk in two dimensions. We then extend Wald's martingale approach to sequential analysis from one dimension to two. Our expressions for the CCFs are novel, compact, exact, and their parameter dependence is explicit. We show that our CCFs closely approximate those of absorption time. Martingales provide an elegant framework to solve principal problems of evolutionary graph theory. It should be possible to extend our analysis to more complex graphs than we show here.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
29
|
Yagoobi S, Traulsen A. Fixation probabilities in network structured meta-populations. Sci Rep 2021; 11:17979. [PMID: 34504152 PMCID: PMC8429422 DOI: 10.1038/s41598-021-97187-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
The effect of population structure on evolutionary dynamics is a long-lasting research topic in evolutionary ecology and population genetics. Evolutionary graph theory is a popular approach to this problem, where individuals are located on the nodes of a network and can replace each other via the links. We study the effect of complex network structure on the fixation probability, but instead of networks of individuals, we model a network of sub-populations with a probability of migration between them. We ask how the structure of such a meta-population and the rate of migration affect the fixation probability. Many of the known results for networks of individuals carry over to meta-populations, in particular for regular networks or low symmetric migration probabilities. However, when patch sizes differ we find interesting deviations between structured meta-populations and networks of individuals. For example, a two patch structure with unequal population size suppresses selection for low migration probabilities.
Collapse
Affiliation(s)
- Sedigheh Yagoobi
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| |
Collapse
|
30
|
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Fast and strong amplifiers of natural selection. Nat Commun 2021; 12:4009. [PMID: 34188036 PMCID: PMC8242091 DOI: 10.1038/s41467-021-24271-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Selection and random drift determine the probability that novel mutations fixate in a population. Population structure is known to affect the dynamics of the evolutionary process. Amplifiers of selection are population structures that increase the fixation probability of beneficial mutants compared to well-mixed populations. Over the past 15 years, extensive research has produced remarkable structures called strong amplifiers which guarantee that every beneficial mutation fixates with high probability. But strong amplification has come at the cost of considerably delaying the fixation event, which can slow down the overall rate of evolution. However, the precise relationship between fixation probability and time has remained elusive. Here we characterize the slowdown effect of strong amplification. First, we prove that all strong amplifiers must delay the fixation event at least to some extent. Second, we construct strong amplifiers that delay the fixation event only marginally as compared to the well-mixed populations. Our results thus establish a tight relationship between fixation probability and time: Strong amplification always comes at a cost of a slowdown, but more than a marginal slowdown is not needed.
Collapse
Affiliation(s)
- Josef Tkadlec
- grid.38142.3c000000041936754XDepartment of Mathematics, Harvard University, Cambridge, MA 02138 USA
| | - Andreas Pavlogiannis
- grid.7048.b0000 0001 1956 2722Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus, Denmark
| | - Krishnendu Chatterjee
- grid.33565.360000000404312247Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin A. Nowak
- grid.38142.3c000000041936754XDepartment of Mathematics, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
31
|
Richter H. Spectral analysis of transient amplifiers for death-birth updating constructed from regular graphs. J Math Biol 2021; 82:61. [PMID: 33993365 PMCID: PMC8126557 DOI: 10.1007/s00285-021-01609-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022]
Abstract
A central question of evolutionary dynamics on graphs is whether or not a mutation introduced in a population of residents survives and eventually even spreads to the whole population, or becomes extinct. The outcome naturally depends on the fitness of the mutant and the rules by which mutants and residents may propagate on the network, but arguably the most determining factor is the network structure. Some structured networks are transient amplifiers. They increase for a certain fitness range the fixation probability of beneficial mutations as compared to a well-mixed population. We study a perturbation method for identifying transient amplifiers for death–birth updating. The method involves calculating the coalescence times of random walks on graphs and finding the vertex with the largest remeeting time. If the graph is perturbed by removing an edge from this vertex, there is a certain likelihood that the resulting perturbed graph is a transient amplifier. We test all pairwise nonisomorphic regular graphs up to a certain order and thus cover the whole structural range expressible by these graphs. For cubic and quartic regular graphs we find a sufficiently large number of transient amplifiers. For these networks we carry out a spectral analysis and show that the graphs from which transient amplifiers can be constructed share certain structural properties. Identifying spectral and structural properties may promote finding and designing such networks.
Collapse
Affiliation(s)
- Hendrik Richter
- HTWK Leipzig University of Applied Sciences, Leipzig, Germany.
| |
Collapse
|
32
|
Whigham PA, Spencer HG. Graph-structured populations and the Hill-Robertson effect. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201831. [PMID: 33959343 PMCID: PMC8074956 DOI: 10.1098/rsos.201831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/23/2021] [Indexed: 05/27/2023]
Abstract
The Hill-Robertson effect describes how, in a finite panmictic diploid population, selection at one diallelic locus reduces the fixation probability of a selectively favoured allele at a second, linked diallelic locus. Here we investigate the influence of population structure on the Hill-Robertson effect in a population of size N. We model population structure as a network by assuming that individuals occupy nodes on a graph connected by edges that link members who can reproduce with each other. Three regular networks (fully connected, ring and torus), two forms of scale-free network and a star are examined. We find that (i) the effect of population structure on the probability of fixation of the favourable allele is invariant for regular structures, but on some scale-free networks and a star, this probability is greatly reduced; (ii) compared to a panmictic population, the mean time to fixation of the favoured allele is much greater on a ring, torus and linear scale-free network, but much less on power-2 scale-free and star networks; (iii) the likelihood with which each of the four possible haplotypes eventually fix is similar across regular networks, but scale-free populations and the star are consistently less likely and much faster to fix the optimal haplotype; (iv) increasing recombination increases the likelihood of fixing the favoured haplotype across all structures, whereas the time to fixation of that haplotype usually increased, and (v) star-like structures were overwhelmingly likely to fix the least fit haplotype and did so significantly more rapidly than other populations. Last, we find that small (N < 64) panmictic populations do not exhibit the scaling property expected from Hill & Robertson (1966 Genet. Res. 8, 269-294. (doi:10.1017/S0016672300010156)).
Collapse
Affiliation(s)
- Peter A. Whigham
- Department of Information Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hamish G. Spencer
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
33
|
Pattni K, Overton CE, Sharkey KJ. Evolutionary graph theory derived from eco-evolutionary dynamics. J Theor Biol 2021; 519:110648. [PMID: 33636202 DOI: 10.1016/j.jtbi.2021.110648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
A biologically motivated individual-based framework for evolution in network-structured populations is developed that can accommodate eco-evolutionary dynamics. This framework is used to construct a network birth and death model. The evolutionary graph theory model, which considers evolutionary dynamics only, is derived as a special case, highlighting additional assumptions that diverge from real biological processes. This is achieved by introducing a negative ecological feedback loop that suppresses ecological dynamics by forcing births and deaths to be coupled. We also investigate how fitness, a measure of reproductive success used in evolutionary graph theory, is related to the life-history of individuals in terms of their birth and death rates. In simple networks, these ecologically motivated dynamics are used to provide new insight into the spread of adaptive mutations, both with and without clonal interference. For example, the star network, which is known to be an amplifier of selection in evolutionary graph theory, can inhibit the spread of adaptive mutations when individuals can die naturally.
Collapse
Affiliation(s)
- Karan Pattni
- Department of Mathematical Sciences, University of Liverpool, United Kingdom.
| | | | - Kieran J Sharkey
- Department of Mathematical Sciences, University of Liverpool, United Kingdom.
| |
Collapse
|
34
|
Fixation probabilities in evolutionary dynamics under weak selection. J Math Biol 2021; 82:14. [PMID: 33534054 DOI: 10.1007/s00285-021-01568-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/14/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
In evolutionary dynamics, a key measure of a mutant trait's success is the probability that it takes over the population given some initial mutant-appearance distribution. This "fixation probability" is difficult to compute in general, as it depends on the mutation's effect on the organism as well as the population's spatial structure, mating patterns, and other factors. In this study, we consider weak selection, which means that the mutation's effect on the organism is small. We obtain a weak-selection perturbation expansion of a mutant's fixation probability, from an arbitrary initial configuration of mutant and resident types. Our results apply to a broad class of stochastic evolutionary models, in which the size and spatial structure are arbitrary (but fixed). The problem of whether selection favors a given trait is thereby reduced from exponential to polynomial complexity in the population size, when selection is weak. We conclude by applying these methods to obtain new results for evolutionary dynamics on graphs.
Collapse
|
35
|
Allen B, Sample C, Steinhagen P, Shapiro J, King M, Hedspeth T, Goncalves M. Fixation probabilities in graph-structured populations under weak selection. PLoS Comput Biol 2021; 17:e1008695. [PMID: 33529219 PMCID: PMC7880501 DOI: 10.1371/journal.pcbi.1008695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/12/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
A population's spatial structure affects the rate of genetic change and the outcome of natural selection. These effects can be modeled mathematically using the Birth-death process on graphs. Individuals occupy the vertices of a weighted graph, and reproduce into neighboring vertices based on fitness. A key quantity is the probability that a mutant type will sweep to fixation, as a function of the mutant's fitness. Graphs that increase the fixation probability of beneficial mutations, and decrease that of deleterious mutations, are said to amplify selection. However, fixation probabilities are difficult to compute for an arbitrary graph. Here we derive an expression for the fixation probability, of a weakly-selected mutation, in terms of the time for two lineages to coalesce. This expression enables weak-selection fixation probabilities to be computed, for an arbitrary weighted graph, in polynomial time. Applying this method, we explore the range of possible effects of graph structure on natural selection, genetic drift, and the balance between the two. Using exhaustive analysis of small graphs and a genetic search algorithm, we identify families of graphs with striking effects on fixation probability, and we analyze these families mathematically. Our work reveals the nuanced effects of graph structure on natural selection and neutral drift. In particular, we show how these notions depend critically on the process by which mutations arise.
Collapse
Affiliation(s)
- Benjamin Allen
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Christine Sample
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Patricia Steinhagen
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Julia Shapiro
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Matthew King
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Timothy Hedspeth
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Megan Goncalves
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| |
Collapse
|
36
|
Kaveh K, McAvoy A, Chatterjee K, Nowak MA. The Moran process on 2-chromatic graphs. PLoS Comput Biol 2020; 16:e1008402. [PMID: 33151935 PMCID: PMC7671562 DOI: 10.1371/journal.pcbi.1008402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/17/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022] Open
Abstract
Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where “properly colored” means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring. Heterogeneity in environmental conditions can have profound effects on long-term evolutionary outcomes in structured populations. We consider a population evolving on a colored graph, wherein the color of a node represents the resources at that location. Using a combination of analytical and numerical methods, we quantify the effects of background heterogeneity on a population’s dynamics. In addition to considering the notion of an “optimal” coloring with respect to mutant invasion, we also study the effects of dynamic spatial redistribution of resources as the population evolves. Although the effects of static background heterogeneity can be quite striking, these effects are often attenuated by the movement (or “flow”) of the underlying resources.
Collapse
Affiliation(s)
- Kamran Kaveh
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire, United States
- * E-mail: (KK); (AM)
| | - Alex McAvoy
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- * E-mail: (KK); (AM)
| | | | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
37
|
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Limits on amplifiers of natural selection under death-Birth updating. PLoS Comput Biol 2020; 16:e1007494. [PMID: 31951609 PMCID: PMC6968837 DOI: 10.1371/journal.pcbi.1007494] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold r⋆ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than r⋆. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process. Extensive literature exists on amplifiers of natural selection for the Birth-death Moran process, but no amplifiers are known for the death-Birth Moran process. Here we show that if amplifiers exist under death-Birth updating, they must be bounded and transient. Boundedness implies weak amplification, and transience implies amplification for only a limited range of the mutant fitness advantage. These results demonstrate that amplification depends on the specific mechanisms of the evolutionary process.
Collapse
Affiliation(s)
| | | | | | - Martin A. Nowak
- Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Allen B, Sample C, Jencks R, Withers J, Steinhagen P, Brizuela L, Kolodny J, Parke D, Lippner G, Dementieva YA. Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs. PLoS Comput Biol 2020; 16:e1007529. [PMID: 31951612 PMCID: PMC6968840 DOI: 10.1371/journal.pcbi.1007529] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022] Open
Abstract
The spatial structure of an evolving population affects the balance of natural selection versus genetic drift. Some structures amplify selection, increasing the role that fitness differences play in determining which mutations become fixed. Other structures suppress selection, reducing the effect of fitness differences and increasing the role of random chance. This phenomenon can be modeled by representing spatial structure as a graph, with individuals occupying vertices. Births and deaths occur stochastically, according to a specified update rule. We study death-Birth updating: An individual is chosen to die and then its neighbors compete to reproduce into the vacant spot. Previous numerical experiments suggested that amplifiers of selection for this process are either rare or nonexistent. We introduce a perturbative method for this problem for weak selection regime, meaning that mutations have small fitness effects. We show that fixation probability under weak selection can be calculated in terms of the coalescence times of random walks. This result leads naturally to a new definition of effective population size. Using this and other methods, we uncover the first known examples of transient amplifiers of selection (graphs that amplify selection for a particular range of fitness values) for the death-Birth process. We also exhibit new families of “reducers of fixation”, which decrease the fixation probability of all mutations, whether beneficial or deleterious. Natural selection is often thought of as “survival of the fittest”, but random chance plays a significant role in which mutations persist and which are eliminated. The balance of selection versus randomness is affected by spatial structure—how individuals are arranged within their habitat. Some structures amplify the effects of selection, so that only the fittest mutations are likely to persist. Others suppress the effects of selection, making the survival of genes primarily a matter of random chance. We study this question using a mathematical model called the “death-Birth process”. Previous studies have found that spatial structure rarely, if ever, amplifies selection for this process. Here we report that spatial structure can indeed amplify selection, at least for mutations with small fitness effects. We also identify structures that reduce the spread of any new mutation, whether beneficial or deleterious. Our work introduces new mathematical techniques for assessing how population structure affects natural selection.
Collapse
Affiliation(s)
- Benjamin Allen
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
- * E-mail:
| | - Christine Sample
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Robert Jencks
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - James Withers
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Patricia Steinhagen
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Lori Brizuela
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Joshua Kolodny
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Darren Parke
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| | - Gabor Lippner
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
| | - Yulia A. Dementieva
- Department of Mathematics, Emmanuel College, Boston, Massachusetts, United States of America
| |
Collapse
|
39
|
Hathcock D, Strogatz SH. Fitness dependence of the fixation-time distribution for evolutionary dynamics on graphs. Phys Rev E 2019; 100:012408. [PMID: 31499887 DOI: 10.1103/physreve.100.012408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 05/27/2023]
Abstract
Evolutionary graph theory models the effects of natural selection and random drift on structured populations of competing mutant and nonmutant individuals. Recent studies have found that fixation times in such systems often have right-skewed distributions. Little is known, however, about how these distributions and their skew depend on mutant fitness. Here we calculate the fitness dependence of the fixation-time distribution for the Moran Birth-death process in populations modeled by two extreme networks: the complete graph and the one-dimensional ring lattice, obtaining exact solutions in the limit of large network size. We find that with non-neutral fitness, the Moran process on the ring has normally distributed fixation times, independent of the relative fitness of mutants and nonmutants. In contrast, on the complete graph, the fixation-time distribution is a fitness-weighted convolution of two Gumbel distributions. When fitness is neutral, the fixation-time distribution jumps discontinuously and becomes highly skewed on both the complete graph and the ring. Even on these simple networks, the fixation-time distribution exhibits a rich fitness dependence, with discontinuities and regions of universality. Extensions of our results to two-fitness Moran models, times to partial fixation, and evolution on random networks are discussed.
Collapse
Affiliation(s)
- David Hathcock
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Steven H Strogatz
- Department of Mathematics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|