1
|
Goodall J, Pettersson ME, Bergström U, Cocco A, Delling B, Heimbrand Y, Karlsson OM, Larsson J, Waldetoft H, Wallberg A, Wennerström L, Andersson L. Evolution of fast-growing piscivorous herring in the young Baltic Sea. Nat Commun 2024; 15:10707. [PMID: 39715744 PMCID: PMC11666761 DOI: 10.1038/s41467-024-55216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
The circumstances under which species diversify to genetically distinct lineages is a fundamental question in biology. Atlantic herring (Clupea harengus) is an extremely abundant zooplanktivorous species that is subdivided into multiple ecotypes that differ regarding spawning time and genetic adaption to local environmental conditions such as temperature, salinity, and light conditions. Here we show using whole genome analysis that multiple populations of piscivorous (fish-eating) herring have evolved sympatrically after the colonization of the brackish Baltic Sea within the last 8000 years postglaciation. The piscivorous ecotype grows faster, and is much larger and less abundant than the zooplanktivorous Baltic herring. Lesions of the gill rakers in the piscivorous ecotype indicated incomplete adaptation to a fish diet. This niche expansion of herring in the young Baltic Sea, with its paucity of piscivorous species, suggests that empty niche space is more important than geographic isolation for the evolution of biodiversity.
Collapse
Affiliation(s)
- Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulf Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bo Delling
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Yvette Heimbrand
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lovisa Wennerström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Perry D, Tamarit E, Morgenroth D, Gräns A, Sturve J, Gullström M, Thor P, Wennhage H. The heat is on: sensitivity of goldsinny wrasse to global climate change. CONSERVATION PHYSIOLOGY 2024; 12:coae068. [PMID: 39381801 PMCID: PMC11459238 DOI: 10.1093/conphys/coae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Unsustainable harvesting practices have drastically reduced fish populations globally and developments in aquaculture have increased. Unexpectedly, Atlantic salmon farming caused the opening of a new fishery in northern European countries, where previously unharvested mesopredatory species, like the goldsinny wrasse (Ctenolabrus rupestris), are captured for use as cleaner fish in pens along the coast and fjords. The goldsinny wrasse is widespread in coastal areas where it plays an ecologically important role as a predator of small invertebrates. Since climate change effects are particularly pronounced in coastal waters, it becomes urgent to understand how fish like the goldsinny will respond to global climate change, including the increasing frequency and intensity of marine heatwaves (MHWs), ocean freshening (OF) and ocean acidification (OA). To address this, we conducted a multi-stressor experiment exposing adult goldsinny to each stressor individually, as well as to all three combined. The results indicated that the goldsinny is highly affected by MHWs and extremely sensitive to a multi-stressor environment, with 34% and 53% mortality, respectively. Additionally, exposure to a MHW event, OF and multi-stressor conditions affected fish metabolism, with the highest standard metabolic- and maximum metabolic-oxygen consumption rates observed for the MHW treatment. Increases in oxidized glutathione (GSSG) and percent oxidized glutathione (% GSSG) in the livers, indicative of oxidative stress, were also seen in the MHW, OF and multi-stressor treatments. As a single stressor, OA showed no significant impacts on the measured parameters. This information is important for conservation of coastal marine environments, given the species' important role in shallow-water habitats and for management of goldsinny or other mesopredatory fish harvested in coastal ecosystems. The sensitivity of the goldsinny wrasse to future stressors is of concern, and any potential reductions in abundance as a result of climate change may lead to cascade effects with ecosystem-wide consequences.
Collapse
Affiliation(s)
- Diana Perry
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
| | - Elena Tamarit
- Department of Earth Sciences, University of Gothenburg, Hörsalsvägen 9, 412 58 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Medicinaregatan 7B, 41390 Gothenburg, Sweden
| | - Albin Gräns
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Medicinaregatan 7B, 41390 Gothenburg, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 413 90 Gothenburg, Sweden
| | - Martin Gullström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, S-141 89 Huddinge, Sweden
| | - Peter Thor
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
| | - Håkan Wennhage
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
| |
Collapse
|
3
|
Reustle JW, Belgrad BA, Pettis E, Smee DL. Hurricanes temporarily weaken human-ecosystem linkages in estuaries. Oecologia 2024; 205:545-559. [PMID: 39009889 DOI: 10.1007/s00442-024-05592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Intense disturbances such as hurricanes may drastically affect ecosystems, producing both acute and long-term changes along coastlines. By disrupting human activities (e.g., fishing), hurricanes can provide an opportunity to quantify the effects of these activities on coastal ecosystems. We performed predator-exclusion experiments on oyster reefs in 2016, one-year before a category-4 hurricane ("Harvey") and again in 2018 one-year post-hurricane where the storm made landfall. Additionally, we examined 8 years (2011-2018) of fisheries-independent data to gauge how fishing pressure and fish populations were affected by the storm in three locations that varied in storm impacts. In the month following Hurricane Harvey, fishing effort dropped by 90% in the area with wind and flooding damage, and predatory fish species commonly targeted by anglers were 300% more abundant than the year prior to the hurricane. The locations without damage to fishing infrastructure did not experience declines in fishing pressure or changes in fish abundance, regardless of flooding disturbance. Reef fish and invertebrate communities directly affected by the storm were significantly different after the hurricane and were ~ 30% more diverse. With low fishing pressure, sportfish CPUE were 1.7-6.9 × higher immediately after the hurricane. Intermediate consumers, such as crabs that prey on oysters, were 45% less abundant and 10% smaller. These results indicate that hurricanes can temporarily disrupt human-ecosystem linkages and reconstitute top-down control by sportfish in estuarine food webs. Disturbance events that interrupt or weaken those interactions may yield indirect ecological benefits and provide insights into the effects of human activities on food webs.
Collapse
Affiliation(s)
- Joseph W Reustle
- Department of Marine and Environmental Science, Hampton University, Hampton, VA, 23368, USA.
| | | | - Evan Pettis
- Texas Parks and Wildlife Department, Rockport, TX, 78382, USA
| | - Delbert L Smee
- Dauphin Island Sea Lab, Dauphin Island, AL, 36695, USA
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
4
|
Olin AB, Bergström U, Bodin Ö, Sundblad G, Eriksson BK, Erlandsson M, Fredriksson R, Eklöf JS. Predation and spatial connectivity interact to shape ecosystem resilience to an ongoing regime shift. Nat Commun 2024; 15:1304. [PMID: 38347008 PMCID: PMC10861472 DOI: 10.1038/s41467-024-45713-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
Ecosystem regime shifts can have severe ecological and economic consequences, making it a top priority to understand how to make systems more resilient. Theory predicts that spatial connectivity and the local environment interact to shape resilience, but empirical studies are scarce. Here, we use >7000 fish samplings from the Baltic Sea coast to test this prediction in an ongoing, spatially propagating shift in dominance from predatory fish to an opportunistic mesopredator, with cascading effects throughout the food web. After controlling for the influence of other drivers (including increasing mesopredator densities), we find that predatory fish habitat connectivity increases resilience to the shift, but only when densities of fish-eating top predators (seals, cormorants) are low. Resilience also increases with temperature, likely through boosted predatory fish growth and recruitment. These findings confirm theoretical predictions that spatial connectivity and the local environment can together shape resilience to regime shifts.
Collapse
Affiliation(s)
- Agnes B Olin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Ulf Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Örjan Bodin
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Göran Sundblad
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Britas Klemens Eriksson
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Mårten Erlandsson
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ronny Fredriksson
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan S Eklöf
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Shang J, Zhang W, Gao Y, Li Y, Wu H. Dam-induced flow alternations drive the regime shift towards a cyanobacteria-dominated microbiota state in the Yangtze River. WATER RESEARCH 2023; 244:120527. [PMID: 37651866 DOI: 10.1016/j.watres.2023.120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
While satisfying the demands of social and economic development, dams act as physical barriers affecting both abiotic and biotic factors in large rivers. These altered factors can interact with each other and gradually reshape the local ecosystem state. The reshaped state may spread downstream and affect ecosystem states on a large scale. However, the spread extent and characteristics of ecosystem states along large rivers remain understudied. To address this problem, alternative microbiota states and their responses to environmental conditions in the Yangtze River were investigated, considering the preponderance of alternative stable states theory in explaining the response of ecosystem states as well as the role of benthic microorganisms in indicating ecosystem states. In this study, flow discharge was identified as the main hydrological factor that clustered benthic microbiota into two types, and these two microbiota types were bistable and characterized by differential enrichment of the Cyanobacteria phylum. Potential analysis demonstrated that reducing flow discharge beneath a threshold (i.e., flow discharge < 12,900 m3/s) could shift benthic microbiotas to a state where benthic cyanobacteria would become the dominant species (the Microbiota State B). In the bistable region (i.e., 12,900 < flow discharge < 28,000 m3/s), both the ecological resilience and the contribution of deterministic process were found weak by relative potential depth calculations and neutral community modeling, suggesting that this region is susceptible to the microbiota state of its upstream and thus deserves more scientific attention to prevent the unfavorable state from spreading downstream. In addition, high denitrification potential at sites of the Microbiota State B was likely responsible for the low N:P ratio, further benefiting the dominance of N-fixing cyanobacteria. This study empirically showed the response of alternative microbiota states to flow gradients, and explored the distribution and characteristics of the microbiota states along the mainstream of the Yangtze River, therefore providing insights into environmental flow design and reservoir regulation of large rivers.
Collapse
Affiliation(s)
- Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| |
Collapse
|
6
|
Shang J, Zhang W, Li Y, Zheng J, Ma X, Wang L, Niu L. How nutrient loading leads to alternative stable states in microbially mediated N-cycle pathways: A new insight into bioavailable nitrogen removal in urban rivers. WATER RESEARCH 2023; 236:119938. [PMID: 37054605 DOI: 10.1016/j.watres.2023.119938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Excessive nutrients have disrupted pathways of microbial-mediated nitrogen (N) cycle in urban rivers and caused bioavailable N to accumulate in sediments, while remedial actions sometimes fail to recover degraded river ecosystems even when environmental quality has been improved. It is not sufficient to revert the ecosystem to its original healthy state by restoring the pre-degradation environmental conditions, as explained by alternative stable states theory. Understanding the recovery of disrupted N-cycle pathways from the perspective of alternative stable states theory can benefit effective river remediation. Previous studies have found alternative microbiota states in rivers; however, the existence and implications of alternative stable states in microbial-mediated N-cycle pathway remain unclear. Here, high-throughput sequencing and N-related enzyme activities measurement were combined in the field investigation to provide empirical evidence for the bi-stability in microbially mediated N-cycle pathways. According to the behavior of bistable ecosystems, the existence of alternative stable states in microbial-mediated N-cycle pathway have been shown, and nutrient loading, mainly total nitrogen and total phosphorus, were identified as key driver of regime shifts. In addition, potential analysis revealed that reducing nutrient loading shifted the N-cycle pathway to a desirable state characterized by high ammonification and nitrification, probably avoiding the accumulation of ammonia and organic N. It should be noted that the improvement of microbiota status can facilitate the recovery of the desirable pathway state according to the relationship between microbiota states and N-cycle pathway states. Keystone species, including Rhizobiales and Sphingomonadales, were discerned by network analysis, and the increase in their relative abundance may facilitate the improvement of microbiota status. The obtained results suggested that the nutrient reduction should be combined with microbiota management to benefit the bioavailable N removal in urban rivers, therefore providing a new insight into alleviating adverse effects of the nutrient loading on urban rivers.
Collapse
Affiliation(s)
- Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China.
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| | - Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Institute of Mulan Ecological River, Putian 351100, PR China
| |
Collapse
|
7
|
Gustafsson J, Legradi J, Lamoree MH, Asplund L, Leonards PEG. Metabolite alterations in zebrafish embryos exposed to hydroxylated polybrominated diphenyl ethers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159269. [PMID: 36208744 DOI: 10.1016/j.scitotenv.2022.159269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are formed by metabolism from the flame retardants polybrominated diphenyl ethers (PBDEs). In the aquatic environment, they are also produced naturally. OH-PBDEs are known for their potential to disrupt energy metabolism, the endocrine system, and the nervous system. This is the first study focusing on the effects of OH-PBDEs at the metabolite level in vivo. The aim of the current study was to investigate the metabolic effects of exposure to OH-PBDEs using metabolomics, and to identify potential biomarker(s) for energy disruption of OH-PBDEs. Zebrafish (Danio rerio) embryos were exposed to two different concentrations of 6-OH-BDE47 and 6-OH-BDE85 and a mixture of these two compounds. In total, 342 metabolites were annotated and 79 metabolites were affected in at least one exposure. Several affected metabolites, e.g. succinic acid, glutamic acid, glutamine, tyrosine, tryptophan, adenine, and several fatty acids, could be connected to known toxic mechanisms of OH-PBDEs. Several phospholipids were strongly up-regulated with up to a six-fold increase after exposure to 6-OH-BDE47, a scarcely described effect of OH-PBDEs. Based on the observed metabolic effects, a possible connection between disruption of the energy metabolism, neurotoxicity and potential immunotoxicity of OH-PBDEs was suggested. Single compound exposures to 6-OH-BDE47 and 6-OH-BDE85 showed little overlap in the affected metabolites. This shows that compounds of similar chemical structure can induce different metabolic effects, possibly relating to their different toxic mechanisms. There were inter-concentration differences in the metabolic profiles, indicating that the metabolic effects were concentration dependent. After exposure to the mixture of 6-OH-BDE47 and 6-OH-BDE85, a new metabolic profile distinct from the profiles obtained from the single compounds was observed. Succinic acid was up-regulated at the highest, but still environmentally relevant, concentration of 6-OH-BDE47, 6-OH-BDE85, and the mixture. Therefore, succinic acid is suggested as a potential biomarker for energy disruption of OH-PBDEs.
Collapse
Affiliation(s)
- Johan Gustafsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden; Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Jessica Legradi
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lillemor Asplund
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Bensky MK, Bell AM. A Behavioral Syndrome Linking Boldness and Flexibility Facilitates Invasion Success in Sticklebacks. Am Nat 2022; 200:846-856. [PMID: 36409977 PMCID: PMC9756172 DOI: 10.1086/721765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
AbstractFor a species to expand its range, it needs to be good at dispersing and also capable of exploiting resources and adapting to different environments. Therefore, behavioral and cognitive traits could play key roles in facilitating invasion success. Marine threespined sticklebacks (Gasterosteus aculeatus) have repeatedly colonized freshwater environments and rapidly adapted to them. Here, by comparing the behavior of hundreds of lab-reared sticklebacks from six different populations, we show that marine sticklebacks are bold, while sticklebacks that have become established in freshwater lakes are flexible. Moreover, boldness and flexibility are negatively correlated with one another at the individual, family, and population levels. These results support the hypothesis that boldness is favored in invaders during the initial dispersal stage, while flexibility is favored in recent immigrants during the establishment stage, and they suggest that the link between boldness and flexibility facilitates success during both the dispersal stage and the establishment stage. This study adds to the growing body of work showing the importance of behavioral correlations in facilitating colonization success in sticklebacks and other organisms.
Collapse
Affiliation(s)
- Miles K. Bensky
- Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Alison M. Bell
- Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Carl R. Woese Institute for Genomic Biology and Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
9
|
Ogorelec Ž, Brinker A, Straile D. Small but voracious: invasive generalist consumes more zooplankton in winter than native planktivore. NEOBIOTA 2022. [DOI: 10.3897/neobiota.78.86788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, Lake Constance has experienced an invasion and domination of three-spined stickleback (Gasterosteus aculeatus) in the pelagic zone, which has coincided with a decline in the native whitefish (Coregonus wartmanni) population. Similar massive invasions of sticklebacks into pelagic zones have been recognized also in marine areas or small lakes worldwide. However, their diet overlaps with native species is rarely evaluated, especially in the winter season, which often presents a bottleneck for fish survival. In this study, we compared the diet of pelagic sticklebacks with the diet of the substantially larger native whitefish in different seasons, to evaluate the threat of the recent stickleback invasion on whitefish populations. By monthly sampling of zooplankton and both fish species diets, we could demonstrate that sticklebacks select similar prey throughout most of the year and consume more prey than whitefish during the winter. With relations between prey availability and prey selection, interspecific and intraspecific seasonal diet variability and indices like a prey-specific index of relative importance, we discuss the importance of zooplankton species traits and abundance for whitefish and stickleback predation. This study shows that sticklebacks, despite their small size, represent a serious potential diet competitor to native planktivorous fish. Sticklebacks quickly adapt to new environments, and thus we advocate precautions regarding their introduction into similar lakes as Lake Constance, as this could cause irreversible ecological changes.
Collapse
|
10
|
Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy. Sci Rep 2022; 12:10952. [PMID: 35768563 PMCID: PMC9242992 DOI: 10.1038/s41598-022-15116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Marine communities undergo rapid changes related to human-induced ecosystem pressures. The Baltic Sea pelagic food web has experienced several regime shifts during the past century, resulting in a system where competition between the dominant planktivorous mesopredatory clupeid fish species herring (Clupea harengus) and sprat (Sprattus sprattus) and the rapidly increasing stickleback (Gasterosteus aculeatus) population is assumed to be high. Here, we investigate diet overlap between these three planktivorous fishes in the Baltic Sea, utilizing DNA metabarcoding on the 18S rRNA gene and the COI gene, targeted qPCR, and microscopy. Our results show niche differentiation between clupeids and stickleback, and highlight that rotifers play an important role in this pattern, as a resource that is not being used by the clupeids nor by other zooplankton in spring. We further show that all the diet assessment methods used in this study are consistent, but also that DNA metabarcoding describes the plankton-fish link at the highest taxonomic resolution. This study suggests that rotifers and other understudied soft-bodied prey may have an important function in the pelagic food web and that the growing population of pelagic stickleback may be supported by the open feeding niche offered by the rotifers.
Collapse
|
11
|
Berkström C, Wennerström L, Bergström U. Ecological connectivity of the marine protected area network in the Baltic Sea, Kattegat and Skagerrak: Current knowledge and management needs. AMBIO 2022; 51:1485-1503. [PMID: 34964951 PMCID: PMC9005595 DOI: 10.1007/s13280-021-01684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 05/31/2023]
Abstract
Marine protected areas (MPAs) have become a key component of conservation and fisheries management to alleviate anthropogenic pressures. For MPA networks to efficiently promote persistence and recovery of populations, ecological connectivity, i.e. dispersal and movement of organisms and material across ecosystems, needs to be taken into account. To improve the ecological coherence of MPA networks, there is hence a need to evaluate the connectivity of species spreading through active migration and passive dispersal. We reviewed knowledge on ecological connectivity in the Baltic Sea, Kattegat and Skagerrak in the northeast Atlantic and present available information on species-specific dispersal and migration distances. Studies on genetic connectivity are summarised and discussed in relation to dispersal-based analyses. Threats to ecological connectivity, limiting dispersal of populations and lowering the resilience to environmental change, were examined. Additionally, a review of studies evaluating the ecological coherence of MPA networks in the Baltic Sea, Kattegat and Skagerrak was performed, and suggestions for future evaluations to meet management needs are presented.
Collapse
Affiliation(s)
- Charlotte Berkström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Lovisa Wennerström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Ulf Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| |
Collapse
|
12
|
Abstract
Studying ecosystem dynamics is critical to monitoring and managing linked systems of humans and nature. Due to the growth of tools and techniques for collecting data, information on the condition of these systems is more widely available. While there are a variety of approaches for mining and assessing data, there is a need for methods to detect latent characteristics in ecosystems linked to temporal and spatial patterns of change. Resilience-based approaches have been effective at not only identifying environmental change but also providing warning in advance of critical transitions in social-ecological systems (SES). In this study, we examine the usefulness of one such method, Fisher Information (FI) for spatiotemporal analysis. FI is used to assess patterns in data and has been established as an effective tool for capturing complex system dynamics to include regimes and regime shifts. We employed FI to assess the biophysical condition of eighty-five Swedish lakes from 1996–2018. Results showed that FI captured spatiotemporal changes in the Swedish lakes and identified distinct spatial patterns above and below the Limes Norrlandicus, a hard ecotone boundary which separates northern and southern ecoregions in Sweden. Further, it revealed that spatial variance changed approaching this boundary. Our results demonstrate the utility of this resilience-based approach for spatiotemporal and spatial regimes analyses linked to monitoring and managing critical watersheds and waterbodies impacted by accelerating environmental change.
Collapse
|
13
|
Angeler DG, Roberts CP, Twidwell D, Allen CR. The Role of Rare Avian Species for Spatial Resilience of Shifting Biomes in the Great Plains of North America. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.849944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human activity causes biome shifts that alter biodiversity and spatial resilience patterns. Rare species, often considered vulnerable to change and endangered, can be a critical element of resilience by providing adaptive capacity in response to disturbances. However, little is known about changes in rarity patterns of communities once a biome transitions into a novel spatial regime. We used time series modeling to identify rare avian species in an expanding terrestrial (southern) spatial regime in the North American Great Plains and another (northern) regime that will become encroached by the southern regime in the near future. In this time-explicit approach, presumably rare species show stochastic dynamics in relative abundance – this is because they occur only rarely throughout the study period, may largely be absent but show occasional abundance peaks or show a combination of these patterns. We specifically assessed how stochastic/rare species of the northern spatial regime influence aspects of ecological resilience once it has been encroached by the southern regime. Using 47 years (1968–2014) of breeding bird survey data and a space-for-time substitution, we found that the overall contribution of stochastic/rare species to the avian community of the southern regime was low. Also, none of these species were of conservation concern, suggesting limited need for revised species conservation action in the novel spatial regime. From a systemic perspective, our results preliminarily suggest that stochastic/rare species only marginally contribute to resilience in a new spatial regime after fundamental ecological changes have occurred.
Collapse
|
14
|
Shang J, Zhang W, Chen X, Li Y, Niu L, Wang L, Zhang H. How environmental stress leads to alternative microbiota states in a river ecosystem: A new insight into river restoration. WATER RESEARCH 2021; 203:117538. [PMID: 34416651 DOI: 10.1016/j.watres.2021.117538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Catastrophic shifts in river ecosystems can abruptly degrade their structures and functions, often reducing the efficacy of traditional remediation targeting physicochemical properties. Alternative stable states theory can not only explain this phenomenon but also provide a new insight into river restoration; however, little is known about the existence and implications of alternative stable states in a river. Considering the important role of benthic microbiota in sustaining river ecosystem structures and functions, ecological theory and high-throughput sequencing were combined to firstly investigate multi-stability in microbial communities and its relationship with environmental factors in river sediments. The Nanjing reach of the Yangtze River was selected as the study area because of its huge spatial heterogeneity and varying degrees of pollution. Bimodal distributions combined with temporal variations of microbiota status provided direct evidence of bistability by showing the instability at the intermediate. In addition, environmental stress, particularly concentrations of NH4+-N and NO3--N, was identified as an important driver of alternative microbiota states from the perspectives of the behavior of bistable ecosystems. Comparison of α-diversity indices and network properties between two alternative microbiota states revealed that the diversity and co-occurrence pattern of microbial communities will be high if they are settled in favorable environments (i.e., comprehensive sediment quality identification index > 3.7). Key taxa, including Clostridiales, Nitrospirales and Myxococcales, were discerned by combining LEfSe and network analysis, and their strong interspecies interactions were believed to be an important factor in triggering alternative microbiota states. This study suggests alternative stable states theory should be considered in river remediation to better understand the response of river ecosystems to environmental stress and the effect of hysteresis, benefiting the implementation of effective monitoring and restoration strategies in a river of urban area.
Collapse
Affiliation(s)
- Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China.
| | - Xinqi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China
| |
Collapse
|
15
|
Gozzi C, Dakos V, Buccianti A, Vaselli O. Are geochemical regime shifts identifiable in river waters? Exploring the compositional dynamics of the Tiber River (Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147268. [PMID: 33940415 DOI: 10.1016/j.scitotenv.2021.147268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Rivers are dynamic and sensitive systems that change their chemical composition from source to mouth. This is due to the influence of a set of variables controlled by hydro-litho-eco-atmospheric processes and anthropic pressures which are, in turn, affected by catchment attributes. This work proposes a new way of thinking about river geochemistry focused on environmental interconnections rather than single chemical variables. Abrupt changes in the system state (composition) of a certain environmental media, driven by perturbations, may trigger Geochemical Regime Shifts (GRSs). This eventuality is explored in the Tiber River (central Italy) chemistry by Compositional Data Analysis, robust Principal Component Analysis and score-distance graphs. Data variability and the interlinks between response and forcing variables are investigated for different drained areas. A potential GRS is detected for major elements in the lower reaches resulting from a threshold-like state response caused by lithological forcing. On the contrary, trace elements respond gradually to environmental drivers, showing no abrupt changes. The findings outline mechanisms and factors influencing the river's self-restoring capability at a basin-wide scale, providing a better comprehension of the circumstances controlling the equilibrium dynamics of river water systems.
Collapse
Affiliation(s)
- Caterina Gozzi
- University of Florence, Dept. of Earth Sciences, Via G. La Pira 4, 50121 Firenze, Italy.
| | - Vasilis Dakos
- ISEM, CNRS, Université de Montpellier, EPHE, IRD, 34095 Montpellier, France
| | - Antonella Buccianti
- University of Florence, Dept. of Earth Sciences, Via G. La Pira 4, 50121 Firenze, Italy
| | - Orlando Vaselli
- University of Florence, Dept. of Earth Sciences, Via G. La Pira 4, 50121 Firenze, Italy; CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
16
|
Yanos CL, Haanstra EP, Colgan Carey F, Passmore SA, Eklöf JS, Bergström U, Hansen JP, Fontaine MC, Maan ME, Eriksson BK. Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes. Ecol Evol 2021; 11:12485-12496. [PMID: 34594514 PMCID: PMC8462182 DOI: 10.1002/ece3.7993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Intraspecific niche differentiation can contribute to population persistence in changing environments. Following declines in large predatory fish, eutrophication, and climate change, there has been a major increase in the abundance of threespine stickleback (Gasterosteus aculeatus) in the Baltic Sea. Two morphotype groups with different levels of body armor-completely plated and incompletely plated-are common in coastal Baltic Sea habitats. The morphotypes are similar in shape, size, and other morphological characteristics and live as one apparently intermixed population. Variation in resource use between the groups could indicate a degree of niche segregation that could aid population persistence in the face of further environmental change. To assess whether morphotypes exhibit niche segregation associated with resource and/or habitat exploitation and predator avoidance, we conducted a field survey of stickleback morphotypes, and biotic and abiotic ecosystem structure, in two habitat types within shallow coastal bays in the Baltic Sea: deeper central waters and shallow near-shore waters. In the deeper waters, the proportion of completely plated stickleback was greater in habitats with greater biomass of two piscivorous fish: perch (Perca fluviatilis) and pike (Esox lucius). In the shallow waters, the proportion of completely plated stickleback was greater in habitats with greater coverage of habitat-forming vegetation. Our results suggest niche segregation between morphotypes, which may contribute to the continued success of stickleback in coastal Baltic Sea habitats.
Collapse
Affiliation(s)
- Casey L. Yanos
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Eeke P. Haanstra
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Fiona Colgan Carey
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Sorsha A. Passmore
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Ulf Bergström
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Michael C. Fontaine
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
- Unité Mixe de Recherche MIVEGEC et Centre de Recherche en Ecologie et Evolution de la SantéCentre IRD de MontpellierCNRSIRD 229Université de MontpellierMontpellierFrance
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Britas Klemens Eriksson
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
17
|
Eriksson BK, Yanos C, Bourlat SJ, Donadi S, Fontaine MC, Hansen JP, Jakubavičiūtė E, Kiragosyan K, Maan ME, Merilä J, Austin ÅN, Olsson J, Reiss K, Sundblad G, Bergström U, Eklöf JS. Habitat segregation of plate phenotypes in a rapidly expanding population of three‐spined stickleback. Ecosphere 2021. [DOI: 10.1002/ecs2.3561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Britas Klemens Eriksson
- Groningen Institute for Evolutionary Life‐Sciences, GELIFES University of Groningen Nijenborgh 7 Groningen9747 AGThe Netherlands
| | - Casey Yanos
- Groningen Institute for Evolutionary Life‐Sciences, GELIFES University of Groningen Nijenborgh 7 Groningen9747 AGThe Netherlands
| | - Sarah J. Bourlat
- Zoological Research Museum Alexander Koenig Adenauerallee 160 Bonn53113Germany
| | - Serena Donadi
- Department of Aquatic Resources Swedish University of Agricultural Science Drottningholm Sweden
| | - Michael C. Fontaine
- MIVEGEC CNRS IRD Univ. Montpellier Montpellier France
- Centre de Recherche en Ecologie et Evolution de la Santé (CREES) Montpellier France
| | | | | | - Karine Kiragosyan
- Groningen Institute for Evolutionary Life‐Sciences, GELIFES University of Groningen Nijenborgh 7 Groningen9747 AGThe Netherlands
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life‐Sciences, GELIFES University of Groningen Nijenborgh 7 Groningen9747 AGThe Netherlands
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme Faculty Biological & Environmental Sciences University of Helsinki PO Box 65 HelsinkiFI‐00014Finland
- Research Division of Ecology & Biodiversity University of Hong Kong Hong Kong Hong Kong, SAR China
| | - Åsa N. Austin
- Department of Ecology, Environment and Plant Sciences Stockholm University Sweden
| | - Jens Olsson
- Department of Aquatic Resources Swedish University of Agricultural Science Drottningholm Sweden
| | - Katrin Reiss
- Faculty for Biosciences and Aquaculture Nord University Bodø8049Norway
| | - Göran Sundblad
- Department of Aquatic Resources Swedish University of Agricultural Science Drottningholm Sweden
| | - Ulf Bergström
- Department of Aquatic Resources Swedish University of Agricultural Science Drottningholm Sweden
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant Sciences Stockholm University Sweden
| |
Collapse
|
18
|
Hasselström L, Gröndahl F. Payments for nutrient uptake in the blue bioeconomy - When to be careful and when to go for it. MARINE POLLUTION BULLETIN 2021; 167:112321. [PMID: 33839571 DOI: 10.1016/j.marpolbul.2021.112321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Harvesting of marine biomass for various applications may generate ecosystem services that currently lack a market price. One of these is nutrient uptake, which could counteract eutrophication. Market-based instruments (MBIs) such as cap & trade, compensatory mitigation, and payment for ecosystem services could help internalize such positive externalities. However, activities of the blue bioeconomy are diverse. We show that identifiable market characteristics can provide guidance concerning when to use these instruments and not. We find that the activities most suitable for MBIs are those that have positive environmental impacts but that are not (yet) financially viable. For activities that are already profitable on the biomass market, ensuring 'additionality' may be a significant problem for MBIs, especially for cap & trade systems or compensatory mitigation. We provide an overview of how some current biomass options fit into this framework and give suggestions on which biomass types to target.
Collapse
Affiliation(s)
- Linus Hasselström
- KTH Royal Institute of Technology, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, 100 44 Stockholm, Sweden.
| | - Fredrik Gröndahl
- KTH Royal Institute of Technology, Department of Sustainable Development, Environmental Science and Engineering, Teknikringen 10B, 100 44 Stockholm, Sweden.
| |
Collapse
|
19
|
Plotnikov IS, Aladin NV, Mossin J, Høeg JT. Crustacean Fauna of the Aral Sea and its Relation to Ichthyofauna During the Modern Regression Crisis and Efforts at Restoration. Zool Stud 2021; 60:e25. [PMID: 34853615 PMCID: PMC8598976 DOI: 10.6620/zs.2021.60-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022]
Abstract
The regression and salinization of the Aral Sea, largely caused by water diversion for irrigation, is among the most severe ecological disasters of the 20th century, and has had severe health and economic consequences for the local population. Introductions of alien species to enhance commercial fisheries before the regression had already impacted the ecology of this system. Crustaceans made up about one-quarter of the original metazoan species and constituted the principal food for native and introduced fish. From 1960 on, crustaceans were recorded at numerous fixed sampling stations, including thanatocoenoses (dead animals from sediment cores). We use this previously unpublished information to document changes in species abundance and discuss their causes in the context of species interactions and changes to physical and chemical parameters. Competition from alien crustaceans led to declines in or even extinction of some native species, but eventually severe salinization became the main detriment, and resulted in the complete collapse of commercial fisheries. This seriously hurt a critical trade, which provided the principal protein source for the local population. We document how comparatively modest conservation efforts enabled the northern Small Aral Sea to partially recover and commercial fishing to resume.
Collapse
Affiliation(s)
- Igor S Plotnikov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia. E-mail: (Plotnikov); (Aladin)
| | - Nikolai V Aladin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia. E-mail: (Plotnikov); (Aladin)
| | - Jens Mossin
- Gentoftegade 76, DK-2820 Gentofte, Denmark. E-mail: (Mossin)
| | - Jens T Høeg
- Section of Marine Biology, Department of Biology, University of Copenhagen, Universitetsparken 4DK-2100 Copenhagen, Denmark. E-mail: (Høeg)
| |
Collapse
|
20
|
Hall M, Nordahl O, Larsson P, Forsman A, Tibblin P. Intra-population variation in reproductive timing covaries with thermal plasticity of offspring performance in perch Perca fluviatilis. J Anim Ecol 2021; 90:2236-2347. [PMID: 34028836 DOI: 10.1111/1365-2656.13542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023]
Abstract
Life history theory posits that organisms should time their reproduction to coincide with environmental conditions that maximize their fitness. Population-level comparisons have contributed important insights on the adaptive value of reproductive timing and its association to environmental variation. Yet, despite its central role to ecology and evolution, the causes and consequences of variation in reproductive timing among individuals within populations are poorly understood in vertebrates other than birds. Using a combination of observational field studies and a split-brood experiment, we investigated whether differences in breeding time were associated with changes in hatching success, reproductive allocation and reaction norms linking offspring performance to temperature within an anadromous Baltic Sea population of perch Perca fluviatilis. Field observations revealed substantial variation in reproductive timing, with the breeding period lasting almost 2 months and occurring in temperatures ranging from 10 to 21℃. The hatching success of perch decreased as the reproductive season progressed. At the same time, the reproductive allocation strategy changed over the season, late breeders (the offspring of which were introduced into a high resource environment and increased predation pressure) produced more and smaller eggs that resulted in smaller larvae, compared with early breeders. The split-brood experiment in which eggs were incubated in different temperatures (10, 12, 15, 18°C) showed that differences in reproductive timing were associated with a change in the shape of the reaction norm linking offspring performance to water temperature indicative of adaptive phenotypic plasticity, with the offspring of early breeders performing best in low temperatures and the offspring of late breeders performing best in high temperatures. The seasonal changes in reproductive traits and the shape of the thermal performance suggest time-dependent adaptive differences among individuals within the population. Management actions aimed at preserving and restoring variation in the timing of reproductive events will thus likely also influence variation in associated life history traits and thermal performance curves, which could safeguard populations against environmental challenges and changes associated with exploitation and global warming.
Collapse
Affiliation(s)
- Marcus Hall
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Oscar Nordahl
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
21
|
Hudson CM, Lucek K, Marques DA, Alexander TJ, Moosmann M, Spaak P, Seehausen O, Matthews B. Threespine Stickleback in Lake Constance: The Ecology and Genomic Substrate of a Recent Invasion. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.611672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invasive species can be powerful models for studying contemporary evolution in natural environments. As invading organisms often encounter new habitats during colonization, they will experience novel selection pressures. Threespine stickleback (Gasterosteus aculeatus complex) have recently colonized large parts of Switzerland and are invasive in Lake Constance. Introduced to several watersheds roughly 150 years ago, they spread across the Swiss Plateau (400–800 m a.s.l.), bringing three divergent hitherto allopatric lineages into secondary contact. As stickleback have colonized a variety of different habitat types during this recent range expansion, the Swiss system is a useful model for studying contemporary evolution with and without secondary contact. For example, in the Lake Constance region there has been rapid phenotypic and genetic divergence between a lake population and some stream populations. There is considerable phenotypic variation within the lake population, with individuals foraging in and occupying littoral, offshore pelagic, and profundal waters, the latter of which is a very unusual habitat for stickleback. Furthermore, adults from the lake population can reach up to three times the size of adults from the surrounding stream populations, and are large by comparison to populations globally. Here, we review the historical origins of the threespine stickleback in Switzerland, and the ecomorphological variation and genomic basis of its invasion in Lake Constance. We also outline the potential ecological impacts of this invasion, and highlight the interest for contemporary evolution studies.
Collapse
|
22
|
Kellner M, Olsén KH. Divergent Response to the SSRI Citalopram in Male and Female Three-Spine Sticklebacks (Gasterosteus aculeatus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:478-487. [PMID: 33151376 PMCID: PMC7688600 DOI: 10.1007/s00244-020-00776-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are psychotropic pharmaceuticals used as antidepressants. SSRIs are commonly found in surface waters in populated areas across the globe. They exert their effect by blocking the serotonin re-uptake transporter in the presynaptic nerve ending. The present study examined whether behavioural effects to exposure to SSRI citalopram depend on personality and sex in the stickleback (Gasterosteus aculeatus). Three aspects of stickleback behaviour are examined: feeding behaviour, aggression, and boldness. We exposed sticklebacks to 350-380 ng/l citalopram for 3 weeks. Feeding and aggressive behaviour were recorded before and after exposure, whereas scototaxis behaviour was tested after exposure. The results show treatment effects in feeding and aggressive behaviour. Feeding is suppressed only in the male group (χ2 = 20.4, P < 0.001) but not in the females (χ2 = 0.91, P = 0.339). Aggressive behaviour was significantly affected by treatment (χ2 = 161.9, P < 0.001), sex (χ2 = 86.3, P < 0.001), and baseline value (χ2 = 58.8, P < 0.001). Aggressiveness was suppressed by citalopram treatment. In addition, the fish showed no change in aggression and feeding behaviour over time regardless of sex and treatment, which indicate personality traits. Only females are affected by treatment in the scototaxis test. The exposed females spent significantly (χ2 = 5.02, P = 0.050) less time in the white zone than the female controls.
Collapse
Affiliation(s)
- Martin Kellner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, 141 89, Huddinge, Sweden
| | - K Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, 141 89, Huddinge, Sweden.
| |
Collapse
|