1
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
2
|
Broillet-Olivier E, Wenger Y, Gilliand N, Cadas H, Sabatasso S, Broillet MC, Brechbühl J. Development of an rpS6-Based Ex Vivo Assay for the Analysis of Neuronal Activity in Mouse and Human Olfactory Systems. Int J Mol Sci 2024; 25:13173. [PMID: 39684883 DOI: 10.3390/ijms252313173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.
Collapse
Affiliation(s)
- Emma Broillet-Olivier
- Faculty of Medicine Hradec Králové, Charles University, 500 00 Hradec Králové, Czech Republic
| | - Yaëlle Wenger
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Noah Gilliand
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Hugues Cadas
- Faculty of Biology and Medicine, University of Lausanne, Bugnon 9, CH-1005 Lausanne, Switzerland
- Faculty Unit of Anatomy and Morphology, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Vulliette 4, CH-1000 Lausanne, Switzerland
| | - Sara Sabatasso
- Faculty of Biology and Medicine, University of Lausanne, Bugnon 9, CH-1005 Lausanne, Switzerland
- Faculty Unit of Anatomy and Morphology, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Vulliette 4, CH-1000 Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Parslow VR, Elmore SA, Cochran RZ, Bolon B, Mahler B, Sabio D, Lubeck BA. Histology Atlas of the Developing Mouse Respiratory System From Prenatal Day 9.0 Through Postnatal Day 30. Toxicol Pathol 2024; 52:153-227. [PMID: 39096105 DOI: 10.1177/01926233241252114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Respiratory diseases are one of the leading causes of death and disability around the world. Mice are commonly used as models of human respiratory disease. Phenotypic analysis of mice with spontaneous, congenital, inherited, or treatment-related respiratory tract abnormalities requires investigators to discriminate normal anatomic features of the respiratory system from those that have been altered by disease. Many publications describe individual aspects of normal respiratory tract development, primarily focusing on morphogenesis of the trachea and lung. However, a single reference providing detailed low- and high-magnification, high-resolution images of routine hematoxylin and eosin (H&E)-stained sections depicting all major structures of the entire developing murine respiratory system does not exist. The purpose of this atlas is to correct this deficiency by establishing one concise reference of high-resolution color photomicrographs from whole-slide scans of H&E-stained tissue sections. The atlas has detailed descriptions and well-annotated images of the developing mouse upper and lower respiratory tracts emphasizing embryonic days (E) 9.0 to 18.5 and major early postnatal events. The selected images illustrate the main structures and events at key developmental stages and thus should help investigators both confirm the chronological age of mouse embryos and distinguish normal morphology as well as structural (cellular and organ) abnormalities.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Robert Z Cochran
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - David Sabio
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Beth A Lubeck
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Shin MG, Bae Y, Afzal R, Kondoh K, Lee EJ. Olfactory modulation of stress-response neural circuits. Exp Mol Med 2023; 55:1659-1671. [PMID: 37524867 PMCID: PMC10474124 DOI: 10.1038/s12276-023-01048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 08/02/2023] Open
Abstract
Stress responses, which are crucial for survival, are evolutionally conserved throughout the animal kingdom. The most common endocrine axis among stress responses is that triggered by corticotropin-releasing hormone neurons (CRHNs) in the hypothalamus. Signals of various stressors are detected by different sensory systems and relayed through individual neural circuits that converge on hypothalamic CRHNs to initiate common stress hormone responses. To investigate the neurocircuitry mechanisms underlying stress hormone responses induced by a variety of stressors, researchers have recently developed new approaches employing retrograde transsynaptic viral tracers, providing a wealth of information about various types of neural circuits that control the activity of CRHNs in response to stress stimuli. Here, we review earlier and more recent findings on the stress neurocircuits that converge on CRHNs, focusing particularly on olfactory systems that excite or suppress the activities of CRHNs and lead to the initiation of stress responses. Because smells are arguably the most important signals that enable animals to properly cope with environmental changes and survive, unveiling the regulatory mechanisms by which smells control stress responses would provide broad insight into how stress-related environmental cues are perceived in the animal brain.
Collapse
Affiliation(s)
- Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
- AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Yiseul Bae
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Ramsha Afzal
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, Okazaki, Aichi, 444-8585, Japan.
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
5
|
Brechbühl J, Ferreira F, Lopes AC, Corset E, Gilliand N, Broillet MC. Ocular Symptoms Associated with COVID-19 Are Correlated with the Expression Profile of Mouse SARS-CoV-2 Binding Sites. Viruses 2023; 15:354. [PMID: 36851565 PMCID: PMC9961464 DOI: 10.3390/v15020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The COVID-19 pandemic has engendered significant scientific efforts in the understanding of its infectious agent SARS-CoV-2 and of its associated symptoms. A peculiar characteristic of this virus lies in its ability to challenge our senses, as its infection can lead to anosmia and ageusia. While ocular symptoms, such as conjunctivitis, optic neuritis or dry eyes, are also reported after viral infection, they have lower frequencies and severities, and their functional development is still elusive. Here, using combined technical approaches based on histological and gene profiling methods, we characterized the expression of SARS-CoV-2 binding sites (Ace2/Tmprss2) in the mouse eye. We found that ACE2 was ectopically expressed in subtissular ocular regions, such as in the optic nerve and in the Harderian/intraorbital lacrimal glands. Moreover, we observed an important variation of Ace2/Tmprss2 expression that is not only dependent on the age and sex of the animal, but also highly heterogenous between individuals. Our results thus give new insight into the expression of SARS-CoV-2 binding sites in the mouse eye and propose an interpretation of the human ocular-associated symptoms linked to SARS-CoV-2.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | | | | | | | | | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| |
Collapse
|
6
|
Abaffy T, Lu HY, Matsunami H. Sex steroid hormone synthesis, metabolism, and the effects on the mammalian olfactory system. Cell Tissue Res 2023; 391:19-42. [PMID: 36401093 PMCID: PMC9676892 DOI: 10.1007/s00441-022-03707-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Sex steroid hormones influence olfactory-mediated social behaviors, and it is generally hypothesized that these effects result from circulating hormones and/or neurosteroids synthesized in the brain. However, it is unclear whether sex steroid hormones are synthesized in the olfactory epithelium or the olfactory bulb, and if they can modulate the activity of the olfactory sensory neurons. Here, we review important discoveries related to the metabolism of sex steroids in the mouse olfactory epithelium and olfactory bulb, along with potential areas of future research. We summarize current knowledge regarding the expression, neuroanatomical distribution, and biological activity of the steroidogenic enzymes, sex steroid receptors, and proteins that are important to the metabolism of these hormones and reflect on their potential to influence early olfactory processing. We also review evidence related to the effects of sex steroid hormones on the development and activity of olfactory sensory neurons. By better understanding how these hormones are metabolized and how they act both at the periphery and olfactory bulb level, we can better appreciate the complexity of the olfactory system and discover potential similarities and differences in early olfactory processing between sexes.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hsiu-Yi Lu
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
7
|
Kim H, Kim H, Nguyen LT, Ha T, Lim S, Kim K, Kim SH, Han K, Hyeon SJ, Ryu H, Park YS, Kim SH, Kim IB, Hong GS, Lee SE, Choi Y, Cohen LB, Oh U. Amplification of olfactory signals by Anoctamin 9 is important for mammalian olfaction. Prog Neurobiol 2022; 219:102369. [PMID: 36330924 DOI: 10.1016/j.pneurobio.2022.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Sensing smells of foods, prey, or predators determines animal survival. Olfactory sensory neurons in the olfactory epithelium (OE) detect odorants, where cAMP and Ca2+ play a significant role in transducing odorant inputs to electrical activity. Here we show Anoctamin 9, a cation channel activated by cAMP/PKA pathway, is expressed in the OE and amplifies olfactory signals. Ano9-deficient mice had reduced olfactory behavioral sensitivity, electro-olfactogram signals, and neural activity in the olfactory bulb. In line with the difference in olfaction between birds and other vertebrates, chick ANO9 failed to respond to odorants, whereas chick CNGA2, a major transduction channel, showed greater responses to cAMP. Thus, we concluded that the signal amplification by ANO9 is important for mammalian olfactory transduction.
Collapse
Affiliation(s)
- Hyungsup Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyesu Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Luan Thien Nguyen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoong Ha
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sujin Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soon Ho Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyungreem Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yong Soo Park
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang Hyun Kim
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Beom Kim
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yunsook Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lawrence B Cohen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Sankarganesh D, Kirkwood RN, Nagnan-Le Meillour P, Angayarkanni J, Achiraman S, Archunan G. Pheromones, binding proteins, and olfactory systems in the pig ( Sus scrofa): An updated review. Front Vet Sci 2022; 9:989409. [PMID: 36532348 PMCID: PMC9751406 DOI: 10.3389/fvets.2022.989409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/14/2022] [Indexed: 07/28/2023] Open
Abstract
Pigs utilize multimodal communication for reproductive and other behaviors, and chemical communication is one of the key components. The success of reproduction relies on chemical communication favored by the steroid pheromones from boar saliva. These steroids were proven to be involved in advancing puberty in gilts (the boar effect) and in promoting estrus behaviors in gilts/sows, thereby helping to detect estrus and facilitating the timing of artificial insemination. The steroid pheromones bound with carrier proteins are evidenced in the mandibular (submandibular) salivary secretions of the boar. These salivary steroids bind with carrier proteins in the nasal mucus and vomeronasal organ (VNO) of the sows, eventually triggering a cascade of activities at the olfactory and endocrine levels. Besides steroid pheromones, pig appeasing pheromones (from mammary skin secretions of sows) have also been demonstrated to bind with carrier proteins in the nasal mucus and VNO of the piglets. Thus far, four different proteins have been identified and confirmed in the nasal mucus and VNO of pigs, including odorant binding proteins (OBPs), salivary lipocalin (SAL), pheromaxein, and Von Ebner's Gland Protein (VEGP). The critical roles of the chemosensory systems, main olfactory systems and VNO, have been comprehensively reported for pigs. This review summarizes the current knowledge on pheromones, their receptor proteins, and the olfactory systems of porcine species.
Collapse
Affiliation(s)
- Devaraj Sankarganesh
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Roy N. Kirkwood
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Patricia Nagnan-Le Meillour
- University Lille, CNRS, USC INRA 1409 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Shanmugam Achiraman
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
9
|
de Vallière A, Lopes AC, Addorisio A, Gilliand N, Nenniger Tosato M, Wood D, Brechbühl J, Broillet MC. Food preference acquired by social transmission is altered by the absence of the olfactory marker protein in mice. Front Nutr 2022; 9:1026373. [PMID: 36438763 PMCID: PMC9682023 DOI: 10.3389/fnut.2022.1026373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Food preference is conserved from the most primitive organisms to social animals including humans. A continuous integration of olfactory cues present both in food and in the different environmental and physiological contexts favors the intake of a given source of food or its avoidance. Remarkably, in mice, food preference can also be acquired by olfactory communication in-between conspecifics, a behavior known as the social transmission of food preference (STFP). STFP occurs when a mouse sniffs the breath of a conspecific who has previously eaten a novel food emitting specific odorants and will then develop a preference for this never encountered food. The efficient discrimination of odorants is performed by olfactory sensory neurons (OSNs). It is essential and supports many of the decision-making processes. Here, we found that the olfactory marker protein (OMP), an enigmatic protein ubiquitously expressed in all mature olfactory neurons, is involved in the fine regulation of OSNs basal activity that directly impacts the odorant discrimination ability. Using a previously described Omp null mouse model, we noticed that although odorants and their hedonic-associated values were still perceived by these mice, compensatory behaviors such as a higher number of sniffing events were displayed both in the discrimination of complex odorant signatures and in social-related contexts. As a consequence, we found that the ability to differentiate the olfactory messages carried by individuals such as those implicated in the social transmission of food preference were significantly compromised in Omp null mice. Thus, our results not only give new insights into the role of OMP in the fine discrimination of odorants but also reinforce the fundamental implication of a functional olfactory system for food decision-making.
Collapse
|
10
|
From In Vitro Data to In Vivo Interspecies Danger Communication: A Study of Chemosensing via the Mouse Grueneberg Ganglion. Animals (Basel) 2022; 12:ani12030356. [PMID: 35158677 PMCID: PMC8833560 DOI: 10.3390/ani12030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The mouse olfactory system is essential for danger detection with a critical role in the Grueneberg ganglion subsystem. This organ, which is localized at the tip of the nose, is implicated in the recognition of kairomones, or chemical cues released by predators which allow interspecies communication. These kairomones, which are present in the secretions of predators, will induce fear-related behaviours in mice. It is not yet known how the Grueneberg ganglion neurons can detect these molecules; however, three specific bitter taste receptors, known as TAS2Rs, that are present in the Grueneberg ganglion play a role in this detection. Here, using in vitro, ex vivo and in vivo experimental approaches, we identified two novel and potent sources of kairomones that are recognized by the mouse Grueneberg ganglion neurons, namely the biological secretions from the raccoon (Procyon lotor) and the skunk (Mephitis mephitis). Abstract In the wild, mice have developed survival strategies to detect volatile cues that warn them of potential danger. Specific olfactory neurons found in the Grueneberg ganglion olfactory subsystem can detect alarm pheromones emitted by stressed conspecifics, as well as kairomones involuntarily released by their predators. These volatile chemical cues allow intra- and interspecies communication of danger, respectively. Alarm pheromones, kairomones and bitter taste ligands share a common chemical motif containing sulfur or nitrogen. Interestingly, three specific bitter taste receptors (TAS2Rs) have been found in the Grueneberg ganglion neurons that are implicated in danger signalling pathways. We have recently developed a TAS2R–expressing heterologous system that mimics the Grueneberg ganglion neuron responses after kairomone stimulation. Here, we demonstrated by in vitro, ex vivo and in vivo experiments that the biological secretions from the raccoon (Procyon lotor) and the skunk (Mephitis mephitis) were acting as potent sources of kairomones. They activated the Grueneberg ganglion neurons and induced fear-related behaviours in mice. Identification of new sources of semiochemicals is a first step towards an understanding of the interspecies danger communication that takes place in the Grueneberg ganglion.
Collapse
|
11
|
Brechbühl J, Lopes AC, Wood D, Bouteiller S, de Vallière A, Verdumo C, Broillet MC. Age-dependent appearance of SARS-CoV-2 entry sites in mouse chemosensory systems reflects COVID-19 anosmia-ageusia symptoms. Commun Biol 2021; 4:880. [PMID: 34267318 PMCID: PMC8282876 DOI: 10.1038/s42003-021-02410-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 pandemic has given rise to a collective scientific effort to study its viral causing agent SARS-CoV-2. Research is focusing in particular on its infection mechanisms and on the associated-disease symptoms. Interestingly, this environmental pathogen directly affects the human chemosensory systems leading to anosmia and ageusia. Evidence for the presence of the cellular entry sites of the virus, the ACE2/TMPRSS2 proteins, has been reported in non-chemosensory cells in the rodent’s nose and mouth, missing a direct correlation between the symptoms reported in patients and the observed direct viral infection in human sensory cells. Here, mapping the gene and protein expression of ACE2/TMPRSS2 in the mouse olfactory and gustatory cells, we precisely identify the virus target cells to be of basal and sensory origin and reveal the age-dependent appearance of viral entry-sites. Our results propose an alternative interpretation of the human viral-induced sensory symptoms and give investigative perspectives on animal models. Brechbühl et al characterise the gene and protein expression of ACE2/TMPRSS2 in the mouse olfactory and gustatory cells, which reveals that SARS-CoV-2 target cells are of basal and sensory origin. They also demonstrate an age-dependent appearance of viral entry-sites, which could inform the use of mouse models in the investigation of SARS-CoV-2 effects on olfaction.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ana Catarina Lopes
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dean Wood
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sofiane Bouteiller
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aurélie de Vallière
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chantal Verdumo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron 2021; 109:2469-2484.e7. [PMID: 34186026 DOI: 10.1016/j.neuron.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses: elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.
Collapse
|
13
|
The Grueneberg ganglion: signal transduction and coding in an olfactory and thermosensory organ involved in the detection of alarm pheromones and predator-secreted kairomones. Cell Tissue Res 2021; 383:535-548. [PMID: 33404842 DOI: 10.1007/s00441-020-03380-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
Abstract
In numerous mammalian species, the nose harbors several compartments populated by chemosensory cells. Among them, the Grueneberg ganglion (GG) located in the anterior nasal region comprises sensory neurons activated by given substances. In rodents, in which the GG has been best studied, these chemical cues mainly include heterocyclic compounds released by predators or by conspecifics. Since some of these substances evoke fear- or stress-associated responses, the GG is considered as a detector for alerting semiochemicals. In fact, certain behavioral and physiological reactions to alarm pheromones and predator-secreted kairomones are attenuated in the absence of a functional GG. Intriguingly, GG neurons are also stimulated by cool temperatures. Moreover, ambient temperatures modulate olfactory responsiveness in the GG, indicating that cross-talks exist between the transduction pathways mediating chemo- and thermosensory signaling in this organ. In this context, exploring the relevant molecular cascades has demonstrated that some chemosensory transduction elements are also crucial for thermosensory signaling in the GG. Finally, for further processing of sensory information, axons of GG neurons project to the olfactory bulb of the brain where they innervate distinct glomerular structures belonging to the enigmatic necklace glomeruli. In this review, the stimuli activating GG neurons as well as the underlying transduction pathways are summarized. Because these stimuli do not exclusively activate GG neurons but also other sensory cells, the biological relevance of the GG is discussed, with a special focus on the role of the GG in detecting alarm signals.
Collapse
|
14
|
Zimmerman AD, Munger SD. Olfactory subsystems associated with the necklace glomeruli in rodents. Cell Tissue Res 2021; 383:549-557. [PMID: 33404845 DOI: 10.1007/s00441-020-03388-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/07/2020] [Indexed: 01/27/2023]
Abstract
The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.
Collapse
Affiliation(s)
- Arthur D Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
| | - Steven D Munger
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA.
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, PO Box 100266, Gainesville, FL, 32610, USA.
| |
Collapse
|