1
|
Narunsky A, Higgs GA, Torres BM, Yu D, de Andrade GB, Kavita K, Breaker RR. The discovery of novel noncoding RNAs in 50 bacterial genomes. Nucleic Acids Res 2024; 52:5152-5165. [PMID: 38647067 PMCID: PMC11109978 DOI: 10.1093/nar/gkae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Structured noncoding RNAs (ncRNAs) contribute to many important cellular processes involving chemical catalysis, molecular recognition and gene regulation. Few ncRNA classes are broadly distributed among organisms from all three domains of life, but the list of rarer classes that exhibit surprisingly diverse functions is growing. We previously developed a computational pipeline that enables the near-comprehensive identification of structured ncRNAs expressed from individual bacterial genomes. The regions between protein coding genes are first sorted based on length and the fraction of guanosine and cytidine nucleotides. Long, GC-rich intergenic regions are then examined for sequence and structural similarity to other bacterial genomes. Herein, we describe the implementation of this pipeline on 50 bacterial genomes from varied phyla. More than 4700 candidate intergenic regions with the desired characteristics were identified, which yielded 44 novel riboswitch candidates and numerous other putative ncRNA motifs. Although experimental validation studies have yet to be conducted, this rate of riboswitch candidate discovery is consistent with predictions that many hundreds of novel riboswitch classes remain to be discovered among the bacterial species whose genomes have already been sequenced. Thus, many thousands of additional novel ncRNA classes likely remain to be discovered in the bacterial domain of life.
Collapse
Affiliation(s)
- Aya Narunsky
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gadareth A Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Blake M Torres
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gabriel Belem de Andrade
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
2
|
Liu J, Zhang H, Xu Y, Meng H, Zeng AP. Turn air-captured CO 2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system. Nat Commun 2023; 14:2772. [PMID: 37188719 DOI: 10.1038/s41467-023-38490-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The use of gaseous and air-captured CO2 for technical biosynthesis is highly desired, but elusive so far due to several obstacles including high energy (ATP, NADPH) demand, low thermodynamic driving force and limited biosynthesis rate. Here, we present an ATP and NAD(P)H-free chemoenzymatic system for amino acid and pyruvate biosynthesis by coupling methanol with CO2. It relies on a re-engineered glycine cleavage system with the NAD(P)H-dependent L protein replaced by biocompatible chemical reduction of protein H with dithiothreitol. The latter provides a higher thermodynamic driving force, determines the reaction direction, and avoids protein polymerization of the rate-limiting enzyme carboxylase. Engineering of H protein to effectively release the lipoamide arm from a protected state further enhanced the system performance, achieving the synthesis of glycine, serine and pyruvate at g/L level from methanol and air-captured CO2. This work opens up the door for biosynthesis of amino acids and derived products from air.
Collapse
Affiliation(s)
- Jianming Liu
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Han Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Yingying Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Hao Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - An-Ping Zeng
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
3
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
4
|
Arribas-Carreira L, Dallabona C, Swanson MA, Farris J, Østergaard E, Tsiakas K, Hempel M, Aquaviva-Bourdain C, Koutsoukos S, Stence NV, Magistrati M, Spector EB, Kronquist K, Christensen M, Karstensen HG, Feichtinger RG, Achleitner MT, Lawrence Merritt II J, Pérez B, Ugarte M, Grünewald S, Riela AR, Julve N, Arnoux JB, Haldar K, Donnini C, Santer R, Lund AM, Mayr JA, Rodriguez-Pombo P, Van Hove JLK. Pathogenic variants in GCSH encoding the moonlighting H-protein cause combined nonketotic hyperglycinemia and lipoate deficiency. Hum Mol Genet 2023; 32:917-933. [PMID: 36190515 PMCID: PMC9990993 DOI: 10.1093/hmg/ddac246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here, we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modeling, expression analysis in GCSH knockdown COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency, whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options.
Collapse
Affiliation(s)
- Laura Arribas-Carreira
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Institute for Molecular Biology-IUBM, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michael A Swanson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Joseph Farris
- Boler-Parseghian Center for Rare and Neglected Disease, and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biology, Saginaw Valley State University, University Center, MI, USA
| | - Elsebet Østergaard
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Pediatrics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Cecile Aquaviva-Bourdain
- Service Biochimie et Biologie Moléculaire, UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, Centre de Biologie Est, CHU de Lyon, Lyon, France
| | - Stefanos Koutsoukos
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | | | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elaine B Spector
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
- Molecular Genetics Lab, Precision DX, Children's Hospital Colorado, Aurora, CO, USA
| | - Kathryn Kronquist
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
- Molecular Genetics Lab, Precision DX, Children's Hospital Colorado, Aurora, CO, USA
| | - Mette Christensen
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Pediatrics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Helena G Karstensen
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Pediatrics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - René G Feichtinger
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | - Melanie T Achleitner
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | | | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Institute for Molecular Biology-IUBM, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Institute for Molecular Biology-IUBM, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain
| | | | | | - Natalia Julve
- Department of Pediatrics, IMED Valencia Hospital, Valencia, Spain
| | - Jean-Baptiste Arnoux
- Centre de Reference des Maladies Hereditaires, Necker Enfants Malades, Paris, France
| | - Kasturi Haldar
- Boler-Parseghian Center for Rare and Neglected Disease, and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Departments of Clinical Genetics and Pediatrics, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Johannes A Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | - Pilar Rodriguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Institute for Molecular Biology-IUBM, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| |
Collapse
|
6
|
Xu Y, Ren J, Wang W, Zeng A. Improvement of glycine biosynthesis from one-carbon compounds and ammonia catalyzed by the glycine cleavage system in vitro. Eng Life Sci 2022; 22:40-53. [PMID: 35024026 PMCID: PMC8727733 DOI: 10.1002/elsc.202100047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Glycine cleavage system (GCS) plays a central role in one-carbon (C1) metabolism and receives increasing interest as a core part of the recently proposed reductive glycine pathway (rGlyP) for assimilation of CO2 and formate. Despite decades of research, GCS has not yet been well understood and kinetic data are barely available. This is to a large degree because of the complexity of GCS, which is composed of four proteins (H, T, P, and L) and catalyzes reactions involving different substrates and cofactors. In vitro kinetics of reconstructed microbial multi-enzyme glycine cleavage/synthase system is desired to better implement rGlyP in microorganisms like Escherichia coli for the use of C1 resources. Here, we examined in vitro several factors that may affect the rate of glycine synthesis via the reverse GCS reaction. We found that the ratio of GCS component proteins has a direct influence on the rate of glycine synthesis, namely higher ratios of P protein and especially H protein to T and L proteins are favorable, and the carboxylation reaction catalyzed by P protein is a key step determining the glycine synthesis rate, whereas increasing the ratio of L protein to other GCS proteins does not have significant effect and the ratio of T protein to other GCS proteins should be kept low. The effect of substrate concentrations on glycine synthesis is quite complex, showing interdependence with the ratios of GCS component proteins. Furthermore, adding the reducing agent dithiothreitol to the reaction mixture not only results in great tolerance to high concentration of formaldehyde, but also increases the rate of glycine synthesis, probably due to its functions in activating P protein and taking up the role of L protein in the non-enzymatic reduction of Hox to Hred. Moreover, the presence of some monovalent and divalent metal ions can have either positive or negative effect on the rate of glycine synthesis, depending on their type and their concentration.
Collapse
Affiliation(s)
- Yingying Xu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri‐product Quality and SafetyMinistry of AgricultureInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of TechnologyHamburgGermany
| |
Collapse
|