1
|
Meng W, Zhang C, Wu C, Huo X, Zhang G. Direction of TIS envelope electric field: Perpendicular to the longitudinal axis of the hippocampus. J Neurosci Methods 2025; 418:110416. [PMID: 40057203 DOI: 10.1016/j.jneumeth.2025.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Temporal Interference Stimulation (TIS) is a non-invasive approach to deep brain stimulation. However, most research has focused on the intensity of modulation, with limited attention given to the directional properties of the induced electric fields, despite their potential importance for precise stimulation. NEW METHODS A novel analytical framework was developed to analyze TIS-induced electric field directions using individual imaging data. For each voxel, the direction corresponding to the maximal modulation depth was calculated. The consistency of these directions within regions of interest (ROIs) and their alignment with the ROI principal axes, derived from principal component analysis (PCA), were assessed. RESULTS Simulations revealed complex spatial and temporal trajectories of the electric field at the voxel level. In the left putamen, the maximal modulation depth reached 0.241 ± 0.041 V/m, whereas in the target region, the left hippocampus, it was lower (0.15 ± 0.032 V/m). Notably, in the left hippocampus, the directions of maximal modulation depth were predominantly perpendicular to its longitudinal axis (84.547 ± 8.776°), reflecting structural specificity across its anterior, middle, and posterior regions. COMPARISON WITH EXISTING METHODS Unlike previous approaches, this study integrates directional analysis into TIS modeling, providing a foundation for precise stimulation by exploring structural alignment. CONCLUSION Our analysis revealed that the orientations of maximal modulation depth in the left hippocampus were perpendicular to its longitudinal axis under the current electrode configuration, but they shifted to parallel alignment when the electrode pairs were swapped. This directional specificity offers insights for optimizing TIS by aligning with structural features, presenting a potential strategy to enhance stimulation precision and broaden its clinical and research applications.
Collapse
Affiliation(s)
- Weiyu Meng
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China
| | - Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China
| | - Changzhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China
| | - Xiaolin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China.
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China.
| |
Collapse
|
2
|
Li L, Bai H, Wu L, Zheng L, Huang L, Li Y, Zhang W, Wang J, Ge S, Qu Y, Liu T. Non-invasive Modulation of Deep Brain Nuclei by Temporal Interference Stimulation. Neurosci Bull 2025; 41:853-865. [PMID: 39920435 PMCID: PMC12014995 DOI: 10.1007/s12264-025-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 02/09/2025] Open
Abstract
Temporal interference (TI) is a form of stimulation that epitomizes an innovative and non-invasive approach for profound neuromodulation of the brain, a technique that has been validated in mice. Yet, the thin cranial bone structure of mice has a marginal influence on the effect of the TI technique and may not effectively showcase its effectiveness in larger animals. Based on this, we carried out TI stimulation experiments on rats. Following the TI intervention, analysis of electrophysiological data and immunofluorescence staining indicated the generation of a stimulation focus within the nucleus accumbens (depth, 8.5 mm) in rats. Our findings affirm the viability of the TI methodology in the presence of thick cranial bones, furnishing efficacious parameters for profound stimulation with TI administered under such conditions. This experiment not only sheds light on the intervention effects of TI deep in the brain but also furnishes robust evidence in support of its prospective clinical utility.
Collapse
Affiliation(s)
- Long Li
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of the Ministry of Civil Affairs, Xi'an, 710049, China
| | - Hao Bai
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Linyan Wu
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Liang Zheng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of the Ministry of Civil Affairs, Xi'an, 710049, China
| | - Liang Huang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of the Ministry of Civil Affairs, Xi'an, 710049, China
| | - Yang Li
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of the Ministry of Civil Affairs, Xi'an, 710049, China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of the Ministry of Civil Affairs, Xi'an, 710049, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of the Ministry of Civil Affairs, Xi'an, 710049, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of the Ministry of Civil Affairs, Xi'an, 710049, China.
| |
Collapse
|
3
|
Khurram OU, Sieck GC. An update on spinal cord injury and diaphragm neuromotor control. Expert Rev Respir Med 2025:1-17. [PMID: 40258801 DOI: 10.1080/17476348.2025.2495165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Understanding neuromotor control of the diaphragm muscle (DIAm) is the foundation for developing therapeutic approaches for functional recovery of ventilatory and non-ventilatory behaviors. Although the DIAm is the primary inspiratory pump, it plays a vital role in a wide variety of higher-force behaviors including airway clearance activities. After spinal cord injury (SCI), higher-force behaviors experience the greatest deficits. A classification scheme for SCI that incorporates this information would be clinically valuable. AREAS COVERED We begin by presenting foundational information about DIAm motor units. In addition, we introduce a classification scheme of SCI based on the impact it has on neural circuitry involved in breathing and other functions of the DIAm. Finally, we consider various promising therapeutic options available to improve DIAm motor function. Relevant literature was identified by searching PubMed and Google Scholar without specific limits on the dates. EXPERT OPINION Classification of SCI based on its impact on the neural circuitry involved in DIAm motor behaviors is an important part of developing effective therapeutics. An approach that considers the specific type of SCI and leverages a combination of interventions will likely yield the best outcomes for restoring both ventilatory and non-ventilatory functions.
Collapse
Affiliation(s)
- Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Plovie T, Schoeters R, Tarnaud T, Joseph W, Tanghe E. Nonlinearities and timescales in neural models of temporal interference stimulation. Bioelectromagnetics 2025; 46:e22522. [PMID: 39183685 DOI: 10.1002/bem.22522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
In temporal interference (TI) stimulation, neuronal cells react to two interfering sinusoidal electric fields with a slightly different frequency (f 1 ${f}_{1}$ ,f 2 ${f}_{2}$ in the range of about 1-4 kHz,∣ f 1 - f 2 ∣ $| {f}_{1}-{f}_{2}| $ in the range of about 1-100 Hz). It has been previously observed that for the same input intensity, the neurons do not react to a purely sinusoidal signal atf 1 ${f}_{1}$ orf 2 ${f}_{2}$ . This study seeks a better understanding of the largely unknown mechanisms underlying TI neuromodulation. To this end, single-compartment models are used to simulate computationally the response of neurons to the sinusoidal and TI waveform. This study compares five different neuron models: Hodgkin-Huxley (HH), Frankenhaeuser-Huxley (FH), along with leaky, exponential, and adaptive-exponential integrate-and-fire (IF). It was found that IF models do not entirely reflect the experimental behavior while the HH and FH model did qualitatively replicate the observed neural responses. Changing the time constants and steady state values of the ion gates in the FH model alters the response to both the sinusoidal and TI signal, possibly reducing the firing threshold of the sinusoidal input below that of the TI input. The results show that in the modified (simplified) model, TI stimulation is not qualitatively impacted by nonlinearities in the current-voltage relation. In contrast, ion channels have a significant impact on the neuronal response. This paper offers insights into neuronal biophysics and computational models of TI stimulation.
Collapse
Affiliation(s)
- Tom Plovie
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Ruben Schoeters
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Thomas Tarnaud
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
- 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Wout Joseph
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Emmeric Tanghe
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Zhang S, Chen L, Woon E, Liu J, Ryu J, Chen H, Fang H, Feng B. Suppression of Visceral Nociception by Selective C-Fiber Transmission Block Using Temporal Interference Sinusoidal Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618090. [PMID: 39464113 PMCID: PMC11507756 DOI: 10.1101/2024.10.13.618090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic visceral pain management remains challenging due to limitations in selective targeting of C-fiber nociceptors. This study investigates temporal interference stimulation (TIS) on dorsal root ganglia (DRG) as a novel approach for selective C-fiber transmission block. We employed (1) GCaMP6 recordings in mouse whole DRG using a flexible, transparent microelectrode array for visualizing L6 DRG neuron activation, (2) ex vivo single-fiber recordings to assess sinusoidal stimulation effects on peripheral nerve axons, (3) in vivo behavioral assessment measuring visceromotor responses (VMR) to colorectal distension in mice, including a TNBS-induced visceral hypersensitivity model, and (4) immunohistological analysis to evaluate immediate immune responses in DRG following TIS. We demonstrated that TIS (2000 Hz and 2020 Hz carrier frequencies) enabled tunable activation of L6 DRG neurons, with the focal region adjustable by altering stimulation amplitude ratios. Low-frequency (20-50 Hz) sinusoidal stimulation effectively blocked C-fiber and Aδ-fiber transmission while sparing fast-conducting A-fibers, with 20 Hz showing highest efficacy. TIS of L6 DRG reversibly suppressed VMR to colorectal distension in both control and TNBS-induced visceral hypersensitive mice. The blocking effect was fine-tunable by adjusting interfering stimulus signal amplitude ratios. No apparent immediate immune responses were observed in DRG following hours-long TIS. In conclusion, TIS on lumbosacral DRG demonstrates promise as a selective, tunable approach for managing chronic visceral pain by effectively blocking C-fiber transmission. This technique addresses limitations of current neuromodulation methods and offers potential for more targeted relief in chronic visceral pain conditions.
Collapse
|
6
|
Demchenko I, Rampersad S, Datta A, Horn A, Churchill NW, Kennedy SH, Krishnan S, Rueda A, Schweizer TA, Griffiths JD, Boyden ES, Santarnecchi E, Bhat V. Target engagement of the subgenual anterior cingulate cortex with transcranial temporal interference stimulation in major depressive disorder: a protocol for a randomized sham-controlled trial. Front Neurosci 2024; 18:1390250. [PMID: 39268031 PMCID: PMC11390435 DOI: 10.3389/fnins.2024.1390250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background Transcranial temporal interference stimulation (tTIS) is a new, emerging neurostimulation technology that utilizes two or more electric fields at specific frequencies to modulate the oscillations of neurons at a desired spatial location in the brain. The physics of tTIS offers the advantage of modulating deep brain structures in a non-invasive fashion and with minimal stimulation of the overlying cortex outside of a selected target. As such, tTIS can be effectively employed in the context of therapeutics for the psychiatric disease of disrupted brain connectivity, such as major depressive disorder (MDD). The subgenual anterior cingulate cortex (sgACC), a key brain center that regulates human emotions and influences negative emotional states, is a plausible target for tTIS in MDD based on reports of its successful neuromodulation with invasive deep brain stimulation. Methods This pilot, single-site, double-blind, randomized, sham-controlled interventional clinical trial will be conducted at St. Michael's Hospital - Unity Health Toronto in Toronto, ON, Canada. The primary objective is to demonstrate target engagement of the sgACC with 130 Hz tTIS using resting-state magnetic resonance imaging (MRI) techniques. The secondary objective is to estimate the therapeutic potential of tTIS for MDD by evaluating the change in clinical characteristics of participants and electrophysiological outcomes and providing feasibility and tolerability estimates for a large-scale efficacy trial. Thirty participants (18-65 years) with unipolar, non-psychotic MDD will be recruited and randomized to receive 10 sessions of 130 Hz tTIS or sham stimulation (n = 15 per arm). The trial includes a pre- vs. post-treatment 3T MRI scan of the brain, clinical evaluation, and electroencephalography (EEG) acquisition at rest and during the auditory mismatch negativity (MMN) paradigm. Discussion This study is one of the first-ever clinical trials among patients with psychiatric disorders examining the therapeutic potential of repetitive tTIS and its neurobiological mechanisms. Data obtained from this trial will be used to optimize the tTIS approach and design a large-scale efficacy trial. Research in this area has the potential to provide a novel treatment option for individuals with MDD and circuitry-related disorders and may contribute to the process of obtaining regulatory approval for therapeutic applications of tTIS. Clinical Trial Registration ClinicalTrials.gov, identifier NCT05295888.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sumientra Rampersad
- Department of Physics, University of Massachusetts Boston, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Andreas Horn
- Department of Neurology, Center for Brain Circuit Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery & Center for NeuroTechnology and NeuroRecovery (CNTR), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Sridhar Krishnan
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John D Griffiths
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| |
Collapse
|
7
|
Lee KZ, Vinit S. Modulatory effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity following cervical spinal cord contusion in the rat. Spine J 2024; 24:352-372. [PMID: 37774983 DOI: 10.1016/j.spinee.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND CONTEXT Magnetic stimulation can noninvasively modulate the neuronal excitability through different stimulatory patterns. PURPOSE The present study hypothesized that trans-spinal magnetic stimulation with intermittent theta burst stimulatory pattern can modulate respiratory motor outputs in a pre-clinical rat model of cervical spinal cord injury. STUDY DESIGN In vivo animal study. METHODS The effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity was assessed in adult rats with unilateral cervical spinal cord contusion at 2 weeks postinjury. RESULTS The results demonstrated that unilateral cervical spinal cord contusion significantly attenuated the inspiratory activity and motor evoked potential of the diaphragm. Trans-spinal magnetic intermittent theta burst stimulation significantly increased the inspiratory activity of the diaphragm in cervical spinal cord contused rats. Inspiratory bursting was also recruited by trans-spinal magnetic intermittent theta burst stimulation in the rats without diaphragmatic activity after cervical spinal cord injury. In addition, trans-spinal magnetic intermittent theta burst stimulation is associated with increases in oxygen consumption and carbon dioxide production. CONCLUSIONS These results suggest that trans-spinal magnetic intermittent theta burst stimulation can induce respiratory neuroplasticity. CLINICAL SIGNIFICANCE We propose that trans-spinal theta burst magnetic stimulation may be considered a potential rehabilitative strategy for improving the respiratory activity after cervical spinal cord injury. This will require future clinical study.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 804 Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 9F, First Teaching Building, 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
8
|
Luff CE, Dzialecka P, Acerbo E, Williamson A, Grossman N. Pulse-width modulated temporal interference (PWM-TI) brain stimulation. Brain Stimul 2024; 17:92-103. [PMID: 38145754 DOI: 10.1016/j.brs.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. OBJECTIVE Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). METHODS/RESULTS We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitude-modulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. CONCLUSIONS PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
| | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom.
| |
Collapse
|
9
|
Violante IR, Alania K, Cassarà AM, Neufeld E, Acerbo E, Carron R, Williamson A, Kurtin DL, Rhodes E, Hampshire A, Kuster N, Boyden ES, Pascual-Leone A, Grossman N. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat Neurosci 2023; 26:1994-2004. [PMID: 37857775 PMCID: PMC10620081 DOI: 10.1038/s41593-023-01456-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity. Here we report the validation of the non-invasive DBS concept in humans. We used electric field modeling and measurements in a human cadaver to verify that the locus of the transcranial TI stimulation can be steerably focused in the hippocampus with minimal exposure to the overlying cortex. We then used functional magnetic resonance imaging and behavioral experiments to show that TI stimulation can focally modulate hippocampal activity and enhance the accuracy of episodic memories in healthy humans. Our results demonstrate targeted, non-invasive electrical stimulation of deep structures in the human brain.
Collapse
Affiliation(s)
- Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Ketevan Alania
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Antonino M Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- Department of Neurology and Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - Romain Carron
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- International Clinical Research Center, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Danielle L Kurtin
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Edward Rhodes
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College London, London, UK
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Edward S Boyden
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern and Koch Institutes, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| |
Collapse
|
10
|
孟 纬, 张 丞, 吴 昌, 张 广, 霍 小. [Research progress on transcranial electrical stimulation for deep brain stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1005-1011. [PMID: 37879931 PMCID: PMC10600422 DOI: 10.7507/1001-5515.202210012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/22/2023] [Indexed: 10/27/2023]
Abstract
Transcranial electric stimulation (TES) is a non-invasive, economical, and well-tolerated neuromodulation technique. However, traditional TES is a whole-brain stimulation with a small current, which cannot satisfy the need for effectively focused stimulation of deep brain areas in clinical treatment. With the deepening of the clinical application of TES, researchers have constantly investigated new methods for deeper, more intense, and more focused stimulation, especially multi-electrode stimulation represented by high-precision TES and temporal interference stimulation. This paper reviews the stimulation optimization schemes of TES in recent years and further analyzes the characteristics and limitations of existing stimulation methods, aiming to provide a reference for related clinical applications and guide the following research on TES. In addition, this paper proposes the viewpoint of the development direction of TES, especially the direction of optimizing TES for deep brain stimulation, aiming to provide new ideas for subsequent research and application.
Collapse
Affiliation(s)
- 纬钰 孟
- 中国科学院 电工研究所 生物电磁学北京重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100149)School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| | - 丞 张
- 中国科学院 电工研究所 生物电磁学北京重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100149)School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| | - 昌哲 吴
- 中国科学院 电工研究所 生物电磁学北京重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100149)School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| | - 广浩 张
- 中国科学院 电工研究所 生物电磁学北京重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100149)School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| | - 小林 霍
- 中国科学院 电工研究所 生物电磁学北京重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100149)School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, P. R. China
| |
Collapse
|
11
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
12
|
Roche AD, Bailey ZK, Gonzalez M, Vu PP, Chestek CA, Gates DH, Kemp SWP, Cederna PS, Ortiz-Catalan M, Aszmann OC. Upper limb prostheses: bridging the sensory gap. J Hand Surg Eur Vol 2023; 48:182-190. [PMID: 36649123 PMCID: PMC9996795 DOI: 10.1177/17531934221131756] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2023]
Abstract
Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality.
Collapse
Affiliation(s)
- Aidan D. Roche
- College of Medicine, The Queen’s Medical Research Institute,
Edinburgh, UK
- Department of Plastic Surgery, NHS Lothian, Livingston, UK
| | - Zachary K. Bailey
- Department of Bioengineering, Imperial College London, South
Kensington Campus, UK
| | | | - Philip P. Vu
- Department of Biomedical Engineering, University of Michigan,
Ann Arbor, MI, USA
- Section of Plastic Surgery, University of Michigan, Ann Arbor,
MI, USA
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan,
Ann Arbor, MI, USA
- Section of Plastic Surgery, University of Michigan, Ann Arbor,
MI, USA
- Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, USA
| | - Deanna H. Gates
- Robotics Institute, University of Michigan, Ann Arbor, MI,
USA
- Department of Biomedical Engineering, University of Michigan,
Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI,
USA
| | - Stephen W. P. Kemp
- Department of Biomedical Engineering, University of Michigan,
Ann Arbor, MI, USA
- Section of Plastic Surgery, University of Michigan, Ann Arbor,
MI, USA
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan,
Ann Arbor, MI, USA
- Section of Plastic Surgery, University of Michigan, Ann Arbor,
MI, USA
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of
Technology, Sweden
- Operational Area 3, Sahlgrenska University Hospital, Mölndal,
Sweden
- Department of Orthopaedics, Institute of Clinical Sciences,
Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Oskar C. Aszmann
- Department of Plastic & Reconstructive Surgery, Medical
University of Vienna, Austria
- Clinical Laboratory for Bionic Extremity Reconstruction,
Medical University of Vienna, Austria
| |
Collapse
|
13
|
Guo W, He Y, Zhang W, Sun Y, Wang J, Liu S, Ming D. A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Front Neurosci 2023; 17:1092539. [PMID: 36777641 PMCID: PMC9912300 DOI: 10.3389/fnins.2023.1092539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
For decades, neuromodulation technology has demonstrated tremendous potential in the treatment of neuropsychiatric disorders. However, challenges such as being less intrusive, more concentrated, using less energy, and better public acceptance, must be considered. Several novel and optimized methods are thus urgently desiderated to overcome these barriers. In specific, temporally interfering (TI) electrical stimulation was pioneered in 2017, which used a low-frequency envelope waveform, generated by the superposition of two high-frequency sinusoidal currents of slightly different frequency, to stimulate specific targets inside the brain. TI electrical stimulation holds the advantages of both spatial targeting and non-invasive character. The ability to activate deep pathogenic targets without surgery is intriguing, and it is expected to be employed to treat some neurological or psychiatric disorders. Recently, efforts have been undertaken to investigate the stimulation qualities and translation application of TI electrical stimulation via computational modeling and animal experiments. This review detailed the most recent scientific developments in the field of TI electrical stimulation, with the goal of serving as a reference for future research.
Collapse
Affiliation(s)
- Wanting Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenquan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yiwei Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Junling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,*Correspondence: Shuang Liu,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China,Tianjin International Joint Research Center for Neural Engineering, Tianjin, China,Dong Ming,
| |
Collapse
|
14
|
Galer EL, Huang R, Madhavan M, Wang E, Zhou Y, Leiter JC, Lu DC. Cervical Epidural Electrical Stimulation Increases Respiratory Activity through Somatostatin-Expressing Neurons in the Dorsal Cervical Spinal Cord in Rats. J Neurosci 2023; 43:419-432. [PMID: 36639888 PMCID: PMC9864577 DOI: 10.1523/jneurosci.1958-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
We tested the hypothesis that dorsal cervical epidural electrical stimulation (CEES) increases respiratory activity in male and female anesthetized rats. Respiratory frequency and minute ventilation were significantly increased when CEES was applied dorsally to the C2-C6 region of the cervical spinal cord. By injecting pseudorabies virus into the diaphragm and using c-Fos activity to identify neurons activated during CEES, we found neurons in the dorsal horn of the cervical spinal cord in which c-Fos and pseudorabies were co-localized, and these neurons expressed somatostatin (SST). Using dual viral infection to express the inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADD), hM4D(Gi), selectively in SST-positive cells, we inhibited SST-expressing neurons by administering Clozapine N-oxide (CNO). During CNO-mediated inhibition of SST-expressing cervical spinal neurons, the respiratory excitation elicited by CEES was diminished. Thus, dorsal cervical epidural stimulation activated SST-expressing neurons in the cervical spinal cord, likely interneurons, that communicated with the respiratory pattern generating network to effect changes in ventilation.SIGNIFICANCE STATEMENT A network of pontomedullary neurons within the brainstem generates respiratory behaviors that are susceptible to modulation by a variety of inputs; spinal sensory and motor circuits modulate and adapt this output to meet the demands placed on the respiratory system. We explored dorsal cervical epidural electrical stimulation (CEES) excitation of spinal circuits to increase ventilation in rats. We identified dorsal somatostatin (SST)-expressing neurons in the cervical spinal cord that were activated (c-Fos-positive) by CEES. CEES no longer stimulated ventilation during inhibition of SST-expressing spinal neuronal activity, thereby demonstrating that spinal SST neurons participate in the activation of respiratory circuits affected by CEES. This work establishes a mechanistic foundation to repurpose a clinically accessible neuromodulatory therapy to activate respiratory circuits and stimulate ventilation.
Collapse
Affiliation(s)
- Erika L Galer
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
- Department of Molecular Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles 90095, California
| | - Ruyi Huang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
| | - Meghna Madhavan
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
| | - Emily Wang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
| | - Yan Zhou
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
| | - James C Leiter
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
- Research Service, White River Junction VA Medical Center, White River Junction 05009, Vermont
| | - Daniel C Lu
- Department of Neurosurgery, University of California Los Angeles, Los Angeles 90095, California
- Department of Molecular Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles 90095, California
- Brain Research Institute, University of California Los Angeles, Los Angeles 90095, California
| |
Collapse
|
15
|
Bahn S, Lee C, Kang B. A computational study on the optimization of transcranial temporal interfering stimulation with high-definition electrodes using unsupervised neural networks. Hum Brain Mapp 2022; 44:1829-1845. [PMID: 36527707 PMCID: PMC9980883 DOI: 10.1002/hbm.26181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Transcranial temporal interfering stimulation (tTIS) can focally stimulate deep parts of the brain related to specific functions using beats at two high frequencies that do not individually affect the human brain. However, the complexity and nonlinearity of the simulation limit it in terms of calculation time and optimization precision. We propose a method to quickly optimize the interfering current value of high-definition electrodes, which can finely stimulate the deep part of the brain, using an unsupervised neural network (USNN) for tTIS. We linked a network that generates the values of electrode currents to another network, which is constructed to compute the interference exposure, for optimization by comparing the generated stimulus with the target stimulus. Further, a computational study was conducted using 16 realistic head models. We also compared tTIS with transcranial alternating current stimulation (tACS), in terms of performance and characteristics. The proposed method generated the strongest stimulation at the target, even when targeting deep areas or performing multi-target stimulation. The high-definition tTISl was less affected than tACS by target depth, and mis-stimulation was reduced compared with the case of using two-pair inferential stimulation in deep region. The optimization of the electrode currents for the target stimulus could be performed in 3 min. Using the proposed USNN for tTIS, we demonstrated that the electrode currents of tTIS can be optimized quickly and accurately. Moreover, we confirmed the possibility of precisely stimulating the deep parts of the brain via transcranial electrical stimulation.
Collapse
Affiliation(s)
- Sangkyu Bahn
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Chany Lee
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Bo‐Yeong Kang
- School of ConvergenceKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
16
|
Jabban L, Ribeiro M, Andreis FR, Dos Santos Nielsen TGN, Metcalfe BW. Pig Ulnar Nerve Recording with Sinusoidal and Temporal Interference Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5084-5088. [PMID: 36086016 DOI: 10.1109/embc48229.2022.9871603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal interference stimulation has been suggested as a method to reach deep targets during transcutaneous electrical stimulation. Despite its growing use in transcutaneous stimulation therapies, the mechanism of its operation is not fully understood. Recent efforts to fill that gap have focused on computational modelling, in vitro and in vivo experiments relying on physical observations - e.g., sensation or movement. This paper expands the current range of experimental methods by demonstrating in vivo extraneural recordings from the ulnar nerve of a pig while applying temporal interference stimulation at a location targeting a distal part of the nerve. The main aim of the experiment was to compare neural activation using sinusoidal stimulation (100 Hz, 2 kHz, 4 kHz) and temporal interference stimulation (2 kHz and 4 kHz). The recordings showed a significant increase in the magnitude of stimulation artefacts at higher frequencies. While those artefacts could be removed and provided an indication of the depth of modulation, they resulted in the saturation of the amplifiers, limiting the stimulation currents and amplifier gains used. The results of the 100 Hz sine wave stimulation showed clear neural activity correlated to the stimulation waveform. However, this was not observed with temporal interference stimulation. The results suggest that, despite its greater penetration, higher currents might be required to observe a neural response with temporal interference stimulation, and more complex artefact rejection techniques may be required to validate the method.
Collapse
|
17
|
Sunshine MD. Electroceuticals and respiratory recovery: Is there a place for electrical spinal stimulation in opioid induced respiratory depression? J Physiol 2022; 600:2829-2830. [DOI: 10.1113/jp283182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Michael D. Sunshine
- Spinal Cord and Brain Injury Research Center University of Kentucky Lexington Kentucky
| |
Collapse
|
18
|
O'Halloran KD. A shock to the system: Neurostimulation therapy for opioid induced respiratory depression. J Physiol 2022; 600:2833-2834. [PMID: 35544711 PMCID: PMC9328370 DOI: 10.1113/jp283272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Malone IG, Kelly MN, Nosacka RL, Nash MA, Yue S, Xue W, Otto KJ, Dale EA. Closed-Loop, Cervical, Epidural Stimulation Elicits Respiratory Neuroplasticity after Spinal Cord Injury in Freely Behaving Rats. eNeuro 2022; 9:ENEURO.0426-21.2021. [PMID: 35058311 PMCID: PMC8856702 DOI: 10.1523/eneuro.0426-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Over half of all spinal cord injuries (SCIs) are cervical, which can lead to paralysis and respiratory compromise, causing significant morbidity and mortality. Effective treatments to restore breathing after severe upper cervical injury are lacking; thus, it is imperative to develop therapies to address this. Epidural stimulation has successfully restored motor function after SCI for stepping, standing, reaching, grasping, and postural control. We hypothesized that closed-loop stimulation triggered via healthy hemidiaphragm EMG activity has the potential to elicit functional neuroplasticity in spinal respiratory pathways after cervical SCI (cSCI). To test this, we delivered closed-loop, electrical, epidural stimulation (CLES) at the level of the phrenic motor nucleus (C4) for 3 d after C2 hemisection (C2HS) in freely behaving rats. A 2 × 2 Latin Square experimental design incorporated two treatments, C2HS injury and CLES therapy resulting in four groups of adult, female Sprague Dawley rats: C2HS + CLES (n = 8), C2HS (n = 6), intact + CLES (n = 6), intact (n = 6). In stimulated groups, CLES was delivered for 12-20 h/d for 3 d. After C2HS, 3 d of CLES robustly facilitated the slope of stimulus-response curves of ipsilesional spinal motor evoked potentials (sMEPs) versus nonstimulated controls. To our knowledge, this is the first demonstration of CLES eliciting respiratory neuroplasticity after C2HS in freely behaving animals. These findings suggest CLES as a promising future therapy to address respiratory deficiency associated with cSCI.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Sijia Yue
- Department of Biostatistics, University of Florida, Gainesville, FL 32611
| | - Wei Xue
- Department of Biostatistics, University of Florida, Gainesville, FL 32611
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
- Department of Neurology, University of Florida, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL 32611
| | - Erica A Dale
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
20
|
Allen LL, Nichols NL, Asa ZA, Emery AT, Ciesla MC, Santiago JV, Holland AE, Mitchell GS, Gonzalez-Rothi EJ. Phrenic motor neuron survival below cervical spinal cord hemisection. Exp Neurol 2021; 346:113832. [PMID: 34363808 PMCID: PMC9065093 DOI: 10.1016/j.expneurol.2021.113832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023]
Abstract
Cervical spinal cord injury (cSCI) severs bulbospinal projections to respiratory motor neurons, paralyzing respiratory muscles below the injury. C2 spinal hemisection (C2Hx) is a model of cSCI often used to study spontaneous and induced plasticity and breathing recovery post-injury. One key assumption is that C2Hx dennervates motor neurons below the injury, but does not affect their survival. However, a recent study reported substantial bilateral motor neuron death caudal to C2Hx. Since phrenic motor neuron (PMN) death following C2Hx would have profound implications for therapeutic strategies designed to target spared neural circuits, we tested the hypothesis that C2Hx minimally impacts PMN survival. Using improved retrograde tracing methods, we observed no loss of PMNs at 2- or 8-weeks post-C2Hx. We also observed no injury-related differences in ChAT or NeuN immunolabeling within labelled PMNs. Although we found no evidence of PMN loss following C2Hx, we cannot rule out neuronal loss in other motor pools. These findings address an essential prerequisite for studies that utilize C2Hx as a model to explore strategies for inducing plasticity and/or regeneration within the phrenic motor system, as they provide important insights into the viability of phrenic motor neurons as therapeutic targets after high cervical injury.
Collapse
Affiliation(s)
- Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Zachary A Asa
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
21
|
Xin Z, Kuwahata A, Liu S, Sekino M. Magnetically Induced Temporal Interference for Focal and Deep-Brain Stimulation. Front Hum Neurosci 2021; 15:693207. [PMID: 34646125 PMCID: PMC8502936 DOI: 10.3389/fnhum.2021.693207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that has been clinically applied for neural modulation. Conventional TMS systems are restricted by the trade-off between depth penetration and the focality of the induced electric field. In this study, we integrated the concept of temporal interference (TI) stimulation, which has been demonstrated as a non-invasive deep-brain stimulation method, with magnetic stimulation in a four-coil configuration. The attenuation depth and spread of the electric field were obtained by performing numerical simulation. Consequently, the proposed temporally interfered magnetic stimulation scheme was demonstrated to be capable of stimulating deeper regions of the brain model while maintaining a relatively narrow spread of the electric field, in comparison to conventional TMS systems. These results demonstrate that TI magnetic stimulation could be a potential candidate to recruit brain regions underneath the cortex. Additionally, by controlling the geometry of the coil array, an analogous relationship between the field depth and focality was observed, in the case of the newly proposed method. The major limitations of the methods, however, would be the considerable intensity and frequency of the input current, followed by the frustration in the thermal management of the hardware.
Collapse
Affiliation(s)
- Zonghao Xin
- Laboratory Sekino, Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akihiro Kuwahata
- Laboratory Sekino, Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shuang Liu
- Laboratory Sekino, Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Laboratory Sekino, Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021; 126:607-626. [PMID: 34232771 PMCID: PMC8409953 DOI: 10.1152/jn.00625.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023] Open
Abstract
Traumatic cervical spinal cord injury (cSCI) can lead to damage of bulbospinal pathways to the respiratory motor nuclei and consequent life-threatening respiratory insufficiency due to respiratory muscle paralysis/paresis. Reports of electrical epidural stimulation (EES) of the lumbosacral spinal cord to enable locomotor function after SCI are encouraging, with some evidence of facilitating neural plasticity. Here, we detail the development and success of EES in recovering locomotor function, with consideration of stimulation parameters and safety measures to develop effective EES protocols. EES is just beginning to be applied in other motor, sensory, and autonomic systems; however, there has only been moderate success in preclinical studies aimed at improving breathing function after cSCI. Thus, we explore the rationale for applying EES to the cervical spinal cord, targeting the phrenic motor nucleus for the restoration of breathing. We also suggest cellular/molecular mechanisms by which EES may induce respiratory plasticity, including a brief examination of sex-related differences in these mechanisms. Finally, we suggest that more attention be paid to the effects of specific electrical parameters that have been used in the development of EES protocols and how that can impact the safety and efficacy for those receiving this therapy. Ultimately, we aim to inform readers about the potential benefits of EES in the phrenic motor system and encourage future studies in this area.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Erica A Dale
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|