1
|
Cai C, Ma Y, Zhang L, An Z, Zhou E, Liu X, Li H, Li W, Li Z, Li G, Liu X, Zhang Y, Han R. Genome-wide methylation and transcriptome differential analysis of skeletal muscle in broilers with valgus-varus deformity. Br Poult Sci 2025; 66:175-186. [PMID: 39504239 DOI: 10.1080/00071668.2024.2410368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024]
Abstract
1. Valgus-varus deformity (VVD) is a disease that severely affects leg function in broilers and for which there is no effective control method current available. Although DNA methylation has an important impact on most physiological and pathological processes, its involvement in skeletal muscle growth and development in VVD broilers is unknown. In this study, genome-wide DNA methylation was analysed in VVD-affected and normal broilers using whole genome resulphite sequencing.2. The results showed that in the cytosine-phosphoric acid-guanine (CG) sequence environment there was a methylation rate of about 55% and 4,265 differentially methylated regions (DMRs) were found in the CG. Of these, 550 were located in the promoter, 547 in the exon region, and 1,718 in the intron region.3. All differentially methylated genes (DMGs) were analysed for enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The GO was enriched in pathways related to protein degradation such as proteasome complex, endopeptidase complex and extracellular region. The KEGG pathways were enriched in signalling pathways related to protein degradation and catabolism such as proteasome, nitrogen metabolism, adherens junction and alanine.4. Protein interactions analysis revealed that FOS, MYL9, and FRAS1 had a high degree of interactions, in which the DNA methylation level of the MYL9 promoter region was negatively correlated with mRNA expression level. Further studies showed that 5-azacytidine (5-AzaC) inhibited DNMT1 and DNMT3A gene expression and promoted MYL9 expression.5. This study systematically investigated overall DNA methylation patterns in the leg muscle of VVD and normal broilers. It screened common differential genes in conjunction with transcriptomic data to further identify genes associated with muscle growth and development. This study provides new insights to better understand the pathogenesis of VVD from an epigenetic perspective.
Collapse
Affiliation(s)
- C Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Y Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - L Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Z An
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - E Zhou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - X Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - H Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - W Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Z Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - G Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - X Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Y Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - R Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
2
|
Jiang H, Liu J, Wang Y, Liao Z, Xiao X, Ding Z, Huang X, Li W, Wang Z, Liang J, Xu J, Hu X, Mao H, Liu S, Chen B. The landscape of RNA 5-methylcytosine modification during chicken embryonic myogenesis. Poult Sci 2025; 104:105109. [PMID: 40188621 PMCID: PMC12002773 DOI: 10.1016/j.psj.2025.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/09/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025] Open
Abstract
Skeletal muscle is a vital protein source for human diets, making its development a significant focus in poultry research. This study examines the effects of RNA 5-methylcytosine (m5C) modifications on chicken skeletal muscle development at two critical embryonic stages: before myoblast differentiation (E10) and after differentiation (E19). By employing MeRIP-seq, we analyzed the dynamic distribution of m5C modifications within the leg muscle transcriptome, uncovering notable differences in modification states between these two stages. Our results indicate that m5C modifications are widespread in chicken skeletal muscle transcriptome and present a unique distribution pattern. Unlike N6-methyladenosine modifications, which typically show a negative correlation with RNA expression, m5C modifications exhibited a weak positive correlation in our findings. Additionally, we identified multiple m5C peaks on important epigenetic regulators, including DNMT3A, DNMT3B, DNMT1, TET3, and METTL3. This observation suggests that RNA m5C may interact with these genes to jointly influence chicken skeletal muscle development. Furthermore, we identified key genes linked to m5C peaks that are enriched in pathways associated with cell cycle regulation, muscle growth, and lipid metabolism. This study provides valuable insights into the role of m5C modifications in the development of chicken skeletal muscle and highlights their potential for coordinating myogenesis and lipid metabolic processes.
Collapse
Affiliation(s)
- Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuxiang Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zurong Liao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyun Xiao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhenxvan Ding
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xvwen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenwei Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zikun Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingzhan Liang
- Jiangxi Wangbeitu Taihe Silk Chicken Development Co., LTD, Ji'an, 343700, China
| | - Jiguo Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang, 330032, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Poultry Institute, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Ponsuksili S, Hadlich F, Li S, Trakooljul N, Reyer H, Oster M, Abitew YA, Sommerfeld V, Rodehutscord M, Wimmers K. DNA methylation dynamics in the small intestine of egg-selected laying hens along egg production stages. Physiol Genomics 2025; 57:125-139. [PMID: 39869094 DOI: 10.1152/physiolgenomics.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann Selected Leghorn-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics. Our sampling encompassed key developmental stages: the pullet stage (10 and 16 wk old), peak production (24 and 30 wk old), and later stage (60 wk old) (n = 99; 10 per group), allowing us to elucidate the temporal dynamics of epigenetic regulation. Our findings highlight a crucial window of epigenetic modulation during the prelaying period, characterized by stage-specific methylation alterations and the involvement of predicted transcription factor motifs within methylated regions. This observation was consistent with the expression patterns of DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B. In addition, a higher methylation level was observed in specific loci or regions in the LSL compared with the LB strain. Notably, we uncover strain-specific differences in methylation levels, particularly pronounced in genomic regions associated with intestinal integrity, inflammation, and energy homeostasis. Our research contributes to the multidisciplinary framework of epigenetics and egg-laying performance, offering valuable implications for poultry production and welfare.NEW & NOTEWORTHY Our study reveals key methylation changes in the jejunum mucosa of laying hens across developmental stages and between strains, with implications for gut health, immune function, and egg production. These findings highlight a crucial role of epigenetic regulation in optimizing performance.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Shuaichen Li
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Ruiz E, Leprieur F, Sposito G, Lüthi M, Schmidlin M, Panfili J, Pellissier L, Albouy C. Environmental DNA Epigenetics Accurately Predicts the Age of Cultured Fish Larvae. Ecol Evol 2025; 15:e70645. [PMID: 39944907 PMCID: PMC11821287 DOI: 10.1002/ece3.70645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/19/2025] Open
Abstract
While acquiring age information is crucial for efficient stock management and biodiversity conservation, traditional aging methods fail to offer a universal, non-invasive, and precise way of estimating a wild animal's age. DNA methylation from tissue DNA (tDNA) was recently proposed as a method to overcome these issues and showed more accurate results than telomere-length-based age assessments. Here, we used environmental DNA (eDNA) for the first time as a template for age estimation, focusing on the larval phase (10-24 days post-hatch) of cultured Dicentrarchus labrax (seabass), a species of major economic and conservation interest. Using third-generation sequencing, we were able to directly detect various modification types (e.g., cytosine and adenosine methylation in all contexts) across the whole genome using amplification-free nanopore sequencing. However, aging sites were only present in the mitogenome, which could be a specific feature of eDNA methylation or the consequence of better DNA protection within mitochondria. By considering qualitative and quantitative information about aging sites according to an objective model selection framework, our epigenetic clock reached a cross-validated accuracy of 2.6 days (Median Absolute Error). Such performances are higher than those of previous clocks, notably for adult seabass even when scaling MAE to the age range, which could be linked to a more dynamic epigenome during early life stages. Overall, our pilot study proposes new methods to determine the potential of eDNA for simultaneous age and biodiversity assessments, although robust validation of our preliminary results along with methodological developments are needed before field applications can be envisaged.
Collapse
Affiliation(s)
- Eliot Ruiz
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Gérard Sposito
- Mediterranean Coastal Environment StationUniversity of MontpellierSèteFrance
| | - Martina Lüthi
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Michel Schmidlin
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Jacques Panfili
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Loïc Pellissier
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Camille Albouy
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
5
|
Gillespie CA, Chowdhury A, Quinn KA, Jenkins MW, Rollins AM, Watanabe M, Ford SM. Fundamentals of DNA methylation in development. Pediatr Res 2024:10.1038/s41390-024-03674-7. [PMID: 39658604 DOI: 10.1038/s41390-024-03674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024]
Abstract
DNA methyation is critical to regulation of gene expression especially during developmentally dynamic changes. A large proportion occurs at CpG (a cytosine followed by a guanine nucleotide) sites and impacts gene expression based on location, timing and level of DNA methylation. The spectrum of effects produced by DNA methylation ranges from inhibition to enhancement of gene expression. Here basic terms and concepts in the study of DNA methylation are introduced. In addition, some of the commonly used techniques to assay DNA methylation are explained. New methods that allow the precise addition and removal of DNA methylation at specific sites will likely enhance our understanding of DNA methylation in development and may even lead to long-lasting therapeutic strategies to cure diseases. IMPACT: Fundamentals of DNA methylation including its significance are made accessible to a broad audience. Common assays for detecting DNA methylation are explained succinctly. Developmental patterns of DNA methylation detected in commonly used animal models are discussed and explained. Novel methodologies to investigate consequences of DNA methylation and demethylation are introduced.
Collapse
Affiliation(s)
- Caitlyn A Gillespie
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Amrin Chowdhury
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Katie A Quinn
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Stephanie M Ford
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Divisions of Neonatology and Pediatric Cardiology, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Xia S, Li G, Zhao X, Zhou C, Yu H, Han W. Methylome and transcriptome joint analyses identify differentially expressed genes based on purebred and crossbred Tianjin-monkey Chicken. Anim Biotechnol 2024; 35:2397812. [PMID: 39739657 DOI: 10.1080/10495398.2024.2397812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/22/2024] [Indexed: 01/02/2025]
Abstract
Tianjin-monkey Chicken is a locally bred naked neck poultry with limited population size. Herein, we intended to identify potential breed-related genes based on methylome and transcriptome analyses. Tianjin-monkey Chicken and Hy-line Brown Chicken were crossbred and the individuals were divided into three groups: PN (Purebred naked neck chicken(Tianjin-monkey Chicken)) group (n = 10); CN (Crossbred naked neck chicken) group (n = 10); CF (Crossbred feathered chicken) group (n = 10). These 30 individuals were subjected to whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Differential methylated regions were detected by WGBS. No significant difference existed in naked-neck-related traits between PN and CN chicken. CpG methylation level of the promoter region differed in PN, CN vs. CF chicken. By integrating methylome and transcriptome results, four genes were identified between PN and CN groups, and 24 key genes were identified between CN and CF groups, with great potential in breeding. The 24 genes were enriched on 32 GO terms and 3 KEGG pathways, such as ion transport. The promoter region CpG methylation level was distinct between feathered and naked neck groups. We identified 24 potential genes for future breeding, valuable for targeted breeding and genetic enhancement in poultry production.
Collapse
Affiliation(s)
- Shuli Xia
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guohui Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Xianghua Zhao
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Chenghao Zhou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Haitao Yu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| |
Collapse
|
7
|
Zoller JA, Parasyraki E, Lu AT, Haghani A, Niehrs C, Horvath S. DNA methylation clocks for clawed frogs reveal evolutionary conservation of epigenetic aging. GeroScience 2024; 46:945-960. [PMID: 37270437 PMCID: PMC10828168 DOI: 10.1007/s11357-023-00840-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
To address how conserved DNA methylation-based epigenetic aging is in diverse branches of the tree of life, we generated DNA methylation data from African clawed frogs (Xenopus laevis) and Western clawed frogs (Xenopus tropicalis) and built multiple epigenetic clocks. Dual species clocks were developed that apply to both humans and frogs (human-clawed frog clocks), supporting that epigenetic aging processes are evolutionary conserved outside mammals. Highly conserved positively age-related CpGs are located in neural-developmental genes such as uncx, tfap2d as well as nr4a2 implicated in age-associated disease. We conclude that signatures of epigenetic aging are evolutionary conserved between frogs and mammals and that the associated genes relate to neural processes, altogether opening opportunities to employ Xenopus as a model organism to study aging.
Collapse
Affiliation(s)
- Joseph A Zoller
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.
- German Cancer Research Center (DKFZ), Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Steve Horvath
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| |
Collapse
|
8
|
Bienkowska A, Raddatz G, Söhle J, Kristof B, Völzke H, Gallinat S, Lyko F, Kaderali L, Winnefeld M, Grönniger E, Falckenhayn C. Development of an epigenetic clock to predict visual age progression of human skin. FRONTIERS IN AGING 2024; 4:1258183. [PMID: 38274286 PMCID: PMC10809641 DOI: 10.3389/fragi.2023.1258183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
Aging is a complex process characterized by the gradual decline of physiological functions, leading to increased vulnerability to age-related diseases and reduced quality of life. Alterations in DNA methylation (DNAm) patterns have emerged as a fundamental characteristic of aged human skin, closely linked to the development of the well-known skin aging phenotype. These changes have been correlated with dysregulated gene expression and impaired tissue functionality. In particular, the skin, with its visible manifestations of aging, provides a unique model to study the aging process. Despite the importance of epigenetic age clocks in estimating biological age based on the correlation between methylation patterns and chronological age, a second-generation epigenetic age clock, which correlates DNAm patterns with a particular phenotype, specifically tailored to skin tissue is still lacking. In light of this gap, we aimed to develop a novel second-generation epigenetic age clock explicitly designed for skin tissue to facilitate a deeper understanding of the factors contributing to individual variations in age progression. To achieve this, we used methylation patterns from more than 370 female volunteers and developed the first skin-specific second-generation epigenetic age clock that accurately predicts the skin aging phenotype represented by wrinkle grade, visual facial age, and visual age progression, respectively. We then validated the performance of our clocks on independent datasets and demonstrated their broad applicability. In addition, we integrated gene expression and methylation data from independent studies to identify potential pathways contributing to skin age progression. Our results demonstrate that our epigenetic age clock, VisAgeX, specifically predicting visual age progression, not only captures known biological pathways associated with skin aging, but also adds novel pathways associated with skin aging.
Collapse
Affiliation(s)
- Agata Bienkowska
- Beiersdorf AG, Research and Development, Hamburg, Germany
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Jörn Söhle
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Boris Kristof
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Henry Völzke
- Institute for Community Medicine, SHIP/KEF, University Medicine Greifswald, Greifswald, Germany
| | | | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Marc Winnefeld
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Elke Grönniger
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | | |
Collapse
|
9
|
Renard T, Martinet B, De Souza Araujo N, Aron S. DNA methylation extends lifespan in the bumblebee Bombus terrestris. Proc Biol Sci 2023; 290:20232093. [PMID: 38052245 PMCID: PMC10697797 DOI: 10.1098/rspb.2023.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Epigenetic alterations are a primary hallmark of ageing. In mammals, age-related epigenetic changes alter gene expression profiles, disrupt cellular homeostasis and physiological functions and, therefore, promote ageing. It remains unclear whether ageing is also driven by epigenetic mechanisms in invertebrates. Here, we used a pharmacological hypomethylating agent (RG108) to evaluate the effects of DNA methylation (DNAme) on lifespan in an insect-the bumblebee Bombus terrestris. RG108 extended mean lifespan by 43% and induced the differential methylation of genes involved in hallmarks of ageing, including DNA damage repair and chromatin organization. Furthermore, the longevity gene sirt1 was overexpressed following the treatment. Functional experiments demonstrated that SIRT1 protein activity was positively associated with lifespan. Overall, our study indicates that epigenetic mechanisms are conserved regulators of lifespan in both vertebrates and invertebrates and provides new insights into how DNAme is involved in the ageing process in insects.
Collapse
Affiliation(s)
- Thibaut Renard
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000, Belgium
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000, Belgium
| | - Natalia De Souza Araujo
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000, Belgium
| | - Serge Aron
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000, Belgium
| |
Collapse
|
10
|
Ju X, Wang Z, Cai D, Bello SF, Nie Q. DNA methylation in poultry: a review. J Anim Sci Biotechnol 2023; 14:138. [PMID: 37925454 PMCID: PMC10625706 DOI: 10.1186/s40104-023-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023] Open
Abstract
As an important epigenetic modification, DNA methylation is involved in many biological processes such as animal cell differentiation, embryonic development, genomic imprinting and sex chromosome inactivation. As DNA methylation sequencing becomes more sophisticated, it becomes possible to use it to solve more zoological problems. This paper reviews the characteristics of DNA methylation, with emphasis on the research and application of DNA methylation in poultry.
Collapse
Affiliation(s)
- Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Zhijun Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Road, Lin'an, 311300, China
| | - Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Semiu Folaniyi Bello
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
11
|
Wang X, Li W, Feng X, Li J, Liu GE, Fang L, Yu Y. Harnessing male germline epigenomics for the genetic improvement in cattle. J Anim Sci Biotechnol 2023; 14:76. [PMID: 37277852 PMCID: PMC10242889 DOI: 10.1186/s40104-023-00874-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Sperm is essential for successful artificial insemination in dairy cattle, and its quality can be influenced by both epigenetic modification and epigenetic inheritance. The bovine germline differentiation is characterized by epigenetic reprogramming, while intergenerational and transgenerational epigenetic inheritance can influence the offspring's development through the transmission of epigenetic features to the offspring via the germline. Therefore, the selection of bulls with superior sperm quality for the production and fertility traits requires a better understanding of the epigenetic mechanism and more accurate identifications of epigenetic biomarkers. We have comprehensively reviewed the current progress in the studies of bovine sperm epigenome in terms of both resources and biological discovery in order to provide perspectives on how to harness this valuable information for genetic improvement in the cattle breeding industry.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Konge Larsen ApS, Kongens Lyngby, 2800, Denmark
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenlong Li
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xia Feng
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianbing Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Venkatesh G, Tönges S, Hanna K, Ng YL, Whelan R, Andriantsoa R, Lingenberg A, Roy S, Nagarajan S, Fong S, Raddatz G, Böhl F, Lyko F. Context-dependent DNA methylation signatures in animal livestock. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad001. [PMID: 36936885 PMCID: PMC10019019 DOI: 10.1093/eep/dvad001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
DNA methylation is an important epigenetic modification that is widely conserved across animal genomes. It is widely accepted that DNA methylation patterns can change in a context-dependent manner, including in response to changing environmental parameters. However, this phenomenon has not been analyzed in animal livestock yet, where it holds major potential for biomarker development. Building on the previous identification of population-specific DNA methylation in clonal marbled crayfish, we have now generated numerous base-resolution methylomes to analyze location-specific DNA methylation patterns. We also describe the time-dependent conversion of epigenetic signatures upon transfer from one environment to another. We further demonstrate production system-specific methylation signatures in shrimp, river-specific signatures in salmon and farm-specific signatures in chicken. Together, our findings provide a detailed resource for epigenetic variation in animal livestock and suggest the possibility for origin tracing of animal products by epigenetic fingerprinting.
Collapse
Affiliation(s)
- Geetha Venkatesh
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Sina Tönges
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Katharina Hanna
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Yi Long Ng
- School of Applied Science, Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964, Singapore
| | - Rose Whelan
- Research, Development & Innovation, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Ranja Andriantsoa
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Annika Lingenberg
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Suki Roy
- Research, Development & Innovation, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Sanjanaa Nagarajan
- Research, Development & Innovation, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Steven Fong
- School of Applied Science, Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964, Singapore
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Florian Böhl
- Research, Development & Innovation, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| |
Collapse
|
13
|
Klughammer J, Romanovskaia D, Nemc A, Posautz A, Seid CA, Schuster LC, Keinath MC, Lugo Ramos JS, Kosack L, Evankow A, Printz D, Kirchberger S, Ergüner B, Datlinger P, Fortelny N, Schmidl C, Farlik M, Skjærven K, Bergthaler A, Liedvogel M, Thaller D, Burger PA, Hermann M, Distel M, Distel DL, Kübber-Heiss A, Bock C. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat Commun 2023; 14:232. [PMID: 36646694 PMCID: PMC9842680 DOI: 10.1038/s41467-022-34828-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/08/2022] [Indexed: 01/18/2023] Open
Abstract
Methylation of cytosines is a prototypic epigenetic modification of the DNA. It has been implicated in various regulatory mechanisms across the animal kingdom and particularly in vertebrates. We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale DNA methylation profiles of multiple organs. Bioinformatic analysis of this large dataset quantified the association of DNA methylation with the underlying genomic DNA sequence throughout vertebrate evolution. We observed a broadly conserved link with two major transitions-once in the first vertebrates and again with the emergence of reptiles. Cross-species comparisons focusing on individual organs supported a deeply conserved association of DNA methylation with tissue type, and cross-mapping analysis of DNA methylation at gene promoters revealed evolutionary changes for orthologous genes. In summary, this study establishes a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic perspective to the study of vertebrate evolution.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Daria Romanovskaia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Amelie Nemc
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Annika Posautz
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charlotte A Seid
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Juan Sebastian Lugo Ramos
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann Evankow
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Dieter Printz
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Stefanie Kirchberger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Bekir Ergüner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Schmidl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Medical University of Vienna, Center for Pathophysiology Infectiology and Immunology, Institute of Hygiene and Applied Immunology, Vienna, Austria
| | - Miriam Liedvogel
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute of Avian Research, An der Vogelwarte, Wilhelmshaven, Germany
| | - Denise Thaller
- Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marcela Hermann
- Medical University of Vienna, Department of Medical Biochemistry, Vienna, Austria
| | - Martin Distel
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Daniel L Distel
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria.
| |
Collapse
|
14
|
Whelan R, Tönges S, Böhl F, Lyko F. Epigenetic biomarkers for animal welfare monitoring. Front Vet Sci 2023; 9:1107843. [PMID: 36713882 PMCID: PMC9874107 DOI: 10.3389/fvets.2022.1107843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Biomarkers for holistic animal welfare monitoring represent a considerable unmet need in veterinary medicine. Epigenetic modifications, like DNA methylation, provide important information about cellular states and environments, which makes them highly attractive for biomarker development. Up until now, much of the corresponding research has been focused on human cancers. However, the increasing availability of animal genomes and epigenomes has greatly improved our capacity for epigenetic biomarker development. In this review, we provide an overview about animal DNA methylation patterns and the technologies that enable the analysis of these patterns. We also describe the key frameworks for compound DNA methylation biomarkers, DNA methylation clocks and environment-specific DNA methylation signatures, that allow complex, context-dependent readouts about animal health and disease. Finally, we provide practical examples for how these biomarkers could be applied for health and environmental exposure monitoring, two key aspects of animal welfare assessments. Taken together, our article provides an overview about the molecular and biological foundations for the development of epigenetic biomarkers in veterinary science and their application potential in animal welfare monitoring.
Collapse
Affiliation(s)
- Rose Whelan
- Creavis, Evonik Operations GmbH, Hanau, Germany
| | - Sina Tönges
- Innovation Management, German Cancer Research Center, Heidelberg, Germany
| | | | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany,*Correspondence: Frank Lyko ✉
| |
Collapse
|
15
|
Single-Cell DNA Methylation Analysis of Chicken Lampbrush Chromosomes. Int J Mol Sci 2022; 23:ijms232012601. [PMID: 36293454 PMCID: PMC9604247 DOI: 10.3390/ijms232012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methylation is an essential epigenetic regulation mechanism implicated in transcription and replication control, developmental reprogramming, retroelements silencing and other genomic processes. During mammalian development, a specific DNA methylation pattern should be established in germ cells to allow embryonic development. Less is known about germ cell DNA methylation in other species. To close this gap, we performed a single-cell methylome analysis of chicken diplotene oocytes. We comprehensively characterized methylation patterns in these cells, obtained methylation-based chicken genome segmentation and identified oocyte-specific methylated gene promoters. Our data show that despite the formation of specific transcriptionally hyperactive genome architecture in chicken diplotene oocytes, methylation patterns in these cells closely resemble genomic distribution observed in somatic tissues.
Collapse
|
16
|
Choi HJ, Jung KM, Rengaraj D, Lee KY, Yoo E, Kim TH, Han JY. Single-cell RNA sequencing of mitotic-arrested prospermatogonia with DAZL::GFP chickens and revealing unique epigenetic reprogramming of chickens. J Anim Sci Biotechnol 2022; 13:64. [PMID: 35659766 PMCID: PMC9169296 DOI: 10.1186/s40104-022-00712-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Germ cell mitotic arrest is conserved in many vertebrates, including birds, although the time of entry or exit into quiescence phase differs. Mitotic arrest is essential for the normal differentiation of male germ cells into spermatogonia and accompanies epigenetic reprogramming and meiosis inhibition from embryonic development to post-hatch. However, mitotic arrest was not well studied in chickens because of the difficulty in obtaining pure germ cells from relevant developmental stage. Results We performed single-cell RNA sequencing to investigate transcriptional dynamics of male germ cells during mitotic arrest in DAZL::GFP chickens. Using differentially expressed gene analysis and K-means clustering to analyze cells at different developmental stages (E12, E16, and hatch), we found that metabolic and signaling pathways were regulated, and that the epigenome was reprogrammed during mitotic arrest. In particular, we found that histone H3K9 and H3K14 acetylation (by HDAC2) and DNA demethylation (by DNMT3B and HELLS) led to a transcriptionally permissive chromatin state. Furthermore, we found that global DNA demethylation occurred gradually after the onset of mitotic arrest, indicating that the epigenetic-reprogramming schedule of the chicken genome differs from that of the mammalian genome. DNA hypomethylation persisted after hatching, and methylation was slowly re-established 3 weeks later. Conclusions We found a unique epigenetic-reprogramming schedule of mitotic-arrested chicken prospermatogonia and prolonged hypomethylation after hatching. This will provide a foundation for understanding the process of germ-cell epigenetic regulation in several species for which this process is not clearly described. Our findings on the biological processes related to sex-specific differentiation of prospermatogonia could help studying germline development in vitro more elaborately. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00712-4.
Collapse
Affiliation(s)
- Hyeon Jeong Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhui Yoo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tae Hyun Kim
- Department of Animal Science, Pennsylvania State University, State College, PA, 16801, USA
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, Acloque H, Weber M. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol 2022; 20:70. [PMID: 35317801 PMCID: PMC8941758 DOI: 10.1186/s12915-022-01270-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cytosine DNA methylation is a heritable epigenetic mark present in most eukaryotic groups. While the patterns and functions of DNA methylation have been extensively studied in mouse and human, their conservation in other vertebrates remains poorly explored. In this study, we interrogated the distribution and function of DNA methylation in primary fibroblasts of seven vertebrate species including bio-medical models and livestock species (human, mouse, rabbit, dog, cow, pig, and chicken). Results Our data highlight both divergence and conservation of DNA methylation patterns and functions. We show that the chicken genome is hypomethylated compared to other vertebrates. Furthermore, compared to mouse, other species show a higher frequency of methylation of CpG-rich DNA. We reveal the conservation of large unmethylated valleys and patterns of DNA methylation associated with X-chromosome inactivation through vertebrate evolution and make predictions of conserved sets of imprinted genes across mammals. Finally, using chemical inhibition of DNA methylation, we show that the silencing of germline genes and endogenous retroviruses (ERVs) are conserved functions of DNA methylation in vertebrates. Conclusions Our data highlight conserved properties of DNA methylation in vertebrate genomes but at the same time point to differences between mouse and other vertebrate species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01270-x.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Elouan Cleroux
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Sylvain Guibert
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté, Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, 21000, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction - CECOS, 14 rue Gaffarel, 21000, Dijon, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.
| |
Collapse
|
18
|
Caulton A, Dodds KG, McRae KM, Couldrey C, Horvath S, Clarke SM. Development of Epigenetic Clocks for Key Ruminant Species. Genes (Basel) 2021; 13:96. [PMID: 35052436 PMCID: PMC8775075 DOI: 10.3390/genes13010096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023] Open
Abstract
Robust biomarkers of chronological age have been developed in humans and model mammalian species such as rats and mice using DNA methylation data. The concept of these so-called "epigenetic clocks" has emerged from a large body of literature describing the relationship between genome-wide methylation levels and age. Epigenetic clocks exploit this phenomenon and use small panels of differentially methylated cytosine (CpG) sites to make robust predictions of chronological age, independent of tissue type. Here, we present highly accurate livestock epigenetic clocks for which we have used the custom mammalian methylation array "HorvathMammalMethyl40" to construct the first epigenetic clock for domesticated goat (Capra hircus), cattle (Bos taurus), Red (Cervus elaphus) and Wapiti deer (Cervus canadensis) and composite-breed sheep (Ovis aries). Additionally, we have constructed a 'farm animal clock' for all species included in the study, which will allow for robust predictions to be extended to various breeds/strains. The farm animal clock shows similarly high accuracy to the individual species' clocks (r > 0.97), utilizing only 217 CpG sites to estimate age (relative to the maximum lifespan of the species) with a single mathematical model. We hypothesise that the applications of this livestock clock could extend well beyond the scope of chronological age estimates. Many independent studies have demonstrated that a deviation between true age and clock derived molecular age is indicative of past and/or present health (including stress) status. There is, therefore, untapped potential to utilize livestock clocks in breeding programs as a predictor for age-related production traits.
Collapse
Affiliation(s)
- Alex Caulton
- AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9092, New Zealand; (K.G.D.); (K.M.M.); (S.M.C.)
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Ken G. Dodds
- AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9092, New Zealand; (K.G.D.); (K.M.M.); (S.M.C.)
| | - Kathryn M. McRae
- AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9092, New Zealand; (K.G.D.); (K.M.M.); (S.M.C.)
| | | | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Shannon M. Clarke
- AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9092, New Zealand; (K.G.D.); (K.M.M.); (S.M.C.)
| |
Collapse
|
19
|
Yan Y, Zhang H, Gao S, Zhang H, Zhang X, Chen W, Lin W, Xie Q. Differential DNA Methylation and Gene Expression Between ALV-J-Positive and ALV-J-Negative Chickens. Front Vet Sci 2021; 8:659840. [PMID: 34136553 PMCID: PMC8203102 DOI: 10.3389/fvets.2021.659840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/28/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic losses in the poultry industry; unfortunately, there is no effective vaccine against ALV-J. DNA methylation plays a crucial role in several biological processes, and an increasing number of diseases have been proven to be related to alterations in DNA methylation. In this study, we screened ALV-J-positive and -negative chickens. Subsequently, we generated and provided the genome-wide gene expression and DNA methylation profiles by MeDIP-seq and RNA-seq of ALV-J-positive and -negative chicken samples; 8,304 differentially methylated regions (DMRs) were identified by MeDIP-seq analysis (p ≤ 0.005) and 515 differentially expressed genes were identified by RNA-seq analysis (p ≤ 0.05). As a result of an integration analysis, we screened six candidate genes to identify ALV-J-negative chickens that possessed differential methylation in the promoter region. Furthermore, TGFB2 played an important role in tumorigenesis and cancer progression, which suggested TGFB2 may be an indicator for identifying ALV-J infections.
Collapse
Affiliation(s)
- Yiming Yan
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Huihua Zhang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shuang Gao
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Huanmin Zhang
- United States Department of Agriculture (USDA), Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Xinheng Zhang
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Weiguo Chen
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Wencheng Lin
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Qingmei Xie
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| |
Collapse
|