1
|
Herman RA, Zhang ZP, Khurshid M, Ayepa E, Yan CH, Anankware JP, Wang J. Microbial community formation during dietary exposure to Fe 3O 4-urease nanoconjugates in silkworm (Bombyx mori): Principal fungi groups facilitate functional flux. Int J Biol Macromol 2025; 306:141367. [PMID: 39986496 DOI: 10.1016/j.ijbiomac.2025.141367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
The gut microbiota of the silkworm (Bombyx mori) is essential for metabolic processes, including digestion and immunity. Nonetheless, the role of specific gut fungi in optimizing nutrient recycling influenced by infiltrated biomaterials remains inadequately elucidated. This study investigates the potential mechanisms through which gut fungi affect the dynamics of nutrient absorption in silkworms. For this purpose, 5th instar silkworms were exposed to Fe3O4-urease nanoconjugates for 168 h following the utilization of high-throughput microbiome sequencing to identify shifts in principal fungal groups. The conditional fungi groups Mucoromycota and Basidiomycota significantly increased from 10.28 % to 47.16 % and 0.53 % to 2.63 % respectively (p < 0.05), while Ascomycota decreased from 86.57 % to 52.29 %, having no negative impact on the growth and sustainability of the host insect. Functional analysis using FunGuild showed enriched trophic nodes including pathotrophs, saprotrophs and symbiotrophs while functions of DEGs demonstrated an increased metabolic capacity associated with iron and heme binding, and lipase activity. This reveals significant restructuring of the gut fungi microbiota with specific fungal taxa exhibiting enhanced abundance and diversity correlated with the presence of Fe3O4-urease nanoconjugates, serving as a potential for engineered nanomaterials to promote the sustainability and development of sericulture.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Zhan-Peng Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Marriam Khurshid
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, P.O. Box KD 74, Kade, Eastern Region, Ghana
| | - Cheng-Hai Yan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jacob Paarechuga Anankware
- School of Agriculture and Technology, University of Energy and Natural Resources, P.O. Box 214, Sunyani, Eastern Region, Ghana
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China; Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou, Jiangsu 213001, PR China.
| |
Collapse
|
2
|
Schlosser C, Sharrouf K, Papadopoulou AA, Haug-Kröper M, Singh S, Johler M, Pettinger J, Horn H, Koch M, Hoeppner S, Fluhrer R. The N-terminal PA domains of signal-peptide-peptidase-like 2 (SPPL2) proteases impact on TNFα cleavage. Commun Biol 2025; 8:686. [PMID: 40307375 PMCID: PMC12043953 DOI: 10.1038/s42003-025-08102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Signal peptide peptidase-like (SPPL) proteases, members of the intramembrane aspartyl protease family, have attracted increased interest due to their involvement in immune cell differentiation and cellular glycan structure regulation. However, the enzymatic domain involved in substrate recognition remains enigmatic. Here we provide evidence that the N-terminal protease-associated (PA) domains of the SPPL2 subfamily are involved in substrate recognition and discrimination of substrates that differ slightly in their luminal/extracellular domain. Presence of the SPPL2c PA domain impairs SPPL2a/b mediated tumor necrosis factor α (TNFα) initial cleavage, kinetics, and processivity in cells and in vitro. In contrast, the SPPL2a PA domain enhances processing by SPPL2b. Additionally, we demonstrate non-canonical shedding activity of SPPL3 on full-length TNFα and that the ability for consecutive cleavage differs within the SPPL-family and is mainly based on the SPPL2a/b membrane spanning body. This provides the basis to finally understand the mechanistic differences of these homologous proteases.
Collapse
Affiliation(s)
- Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Kinda Sharrouf
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alkmini A Papadopoulou
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Martina Haug-Kröper
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Suman Singh
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Maximilian Johler
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Jonas Pettinger
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Henrike Horn
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marco Koch
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- University of Augsburg, Center for Interdisciplinary Health Research, Augsburg, Germany
| | - Sabine Hoeppner
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- University of Augsburg, Center for Interdisciplinary Health Research, Augsburg, Germany.
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany.
| |
Collapse
|
3
|
Manganelli V, Costanzo M, Caissutti D, Salvatori I, Candelise N, Montalesi E, De Simone G, Ferri A, Garofalo T, Sorice M, Ruoppolo M, Longo A, Misasi R. Neuroglobin regulates autophagy through mTORC1/RAPTOR/ULK-1 pathway in human neuroblastoma cells. Sci Rep 2025; 15:7642. [PMID: 40038411 PMCID: PMC11880548 DOI: 10.1038/s41598-025-91701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Neuroglobin (NGB) is a hexacoordinated hemeprotein mainly expressed in neurons. Following its upregulation and mitochondrial localization, NGB plays a pro-survival role against neuronal stress. Previously, we built a stable NGB-FLAG-overexpressing neuroblastoma cell line and showed that NGB promotes autophagy and localizes in autophagolysosomes. Here we studied the interactome of NGB-FLAG cells to identify novel autophagy-related NGB-binding partners and investigate how its upregulation could induce autophagy. LC3-II and p62 levels as well as mTORC1 activity were analyzed to evaluate autophagy in NGB-FLAG cells. NGB interactors were identified by affinity purification-mass spectrometry and protein-protein interaction network analysis and validated by immunoprecipitation. The increase of LC3-II and decrease of p62 in NGB-FLAG compared to control confirmed that NGB overexpression promotes autophagy. Interactome analysis identified the Regulatory associated protein of mTOR (RPTOR) as one of 134 putative NGB interactors, further validated by immunoprecipitation. NGB overexpression also determined a consistent increment of RPTOR phosphorylation at Ser792 which is required for mTORC1 inhibition, then confirmed by lower levels of phospho-mTOR and phospho-ULK1 in NGB-FLAG compared to control. Collectively, our data suggests that NGB is a positive regulator of autophagy. Through association with RPTOR, NGB may promote its activation and inhibit mTORC1 repressive activity on autophagy initiation.
Collapse
Affiliation(s)
- Valeria Manganelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.C.Ar.L, Naples, 80145, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Illari Salvatori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
- Santa Lucia Foundation IRCCS, Rome, 00179, Italy
| | - Niccolò Candelise
- National Center for Drug Research and Evaluation, Italian National Institute of Health (ISS), Rome, 00161, Italy
| | - Emiliano Montalesi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Giovanna De Simone
- Department of Sciences, University of Rome "Roma Tre", Rome, 00146, Italy
| | - Alberto Ferri
- Santa Lucia Foundation IRCCS, Rome, 00179, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, 00133, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.C.Ar.L, Naples, 80145, Italy
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
4
|
Huang S, Méheust R, Barquera B, Light SH. Versatile roles of protein flavinylation in bacterial extracyotosolic electron transfer. mSystems 2024; 9:e0037524. [PMID: 39041811 PMCID: PMC11334425 DOI: 10.1128/msystems.00375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remain unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We identify ApbE flavinylation sites within structurally diverse protein domains and show that multi-flavinylated proteins, which may mediate longer distance electron transfer via multiple flavinylation sites, exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models. IMPORTANCE This study explores the mechanisms bacteria use to transfer electrons outside the cytosol, a fundamental process involved in energy metabolism and environmental interactions. Central to this process is a phenomenon known as flavinylation, where a flavin molecule-a compound related to vitamin B2-is covalently attached to proteins, to enable electron transfer. We employed advanced genomic analysis and computational modeling to explore how this modification occurs across different bacterial species. Our findings uncover new types of proteins that undergo this modification and highlight the diversity and complexity of bacterial electron transfer mechanisms. This research broadens our understanding of bacterial physiology and informs potential biotechnological applications that rely on microbial electron transfer, including bioenergy production and bioremediation.
Collapse
Affiliation(s)
- Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Hopp MT, Ugurlar D, Pezeshkpoor B, Biswas A, Ramoji A, Neugebauer U, Oldenburg J, Imhof D. In-depth structure-function profiling of the complex formation between clotting factor VIII and heme. Thromb Res 2024; 237:184-195. [PMID: 38631156 DOI: 10.1016/j.thromres.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Blood disorders, such as sickle cell disease, and other clinical conditions are often accompanied by intravascular hemolytic events along with the development of severe coagulopathies. Hemolysis, in turn, leads to the accumulation of Fe(II/III)-protoporphyrin IX (heme) in the intravascular compartment, which can trigger a variety of proinflammatory and prothrombotic reactions. As such, heme binding to the blood coagulation proteins factor VIII (FVIII), fibrinogen, and activated protein C with functional consequences has been demonstrated earlier. METHODS We herein present an in-depth characterization of the FVIII-heme interaction at the molecular level and its (patho-)physiological relevance through the application of biochemical, biophysical, structural biology, bioinformatic, and diagnostic tools. RESULTS FVIII has a great heme-binding capacity with seven heme molecules associating with the protein. The respective binding sites were identified by investigating heme binding to FVIII-derived peptides in combination with molecular docking and dynamic simulation studies of the complex as well as cryo-electron microscopy, revealing three high-affinity and four moderate heme-binding motifs (HBMs). Furthermore, the relevance of the FVIII-heme complex formation was characterized in physiologically relevant assay systems, revealing a ~ 50 % inhibition of the FVIII cofactor activity even in the protein-rich environment of blood plasma. CONCLUSION Our study provides not only novel molecular insights into the FVIII-heme interaction and its physiological relevance, but also strongly suggests the reduction of the intrinsic pathway and the accentuation of the final clotting step (by, for example, fibrinogen crosslinking) in hemolytic conditions as well as a future perspective in the context of FVIII substitution therapy of hemorrhagic events in hemophilia A patients.
Collapse
Affiliation(s)
- Marie-T Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany; Department of Chemistry, Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany.
| | - Deniz Ugurlar
- Center for Electron Microscopy, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
6
|
Rathod DC, Vaidya SM, Hopp MT, Kühl T, Imhof D. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules 2023; 13:1031. [PMID: 37509066 PMCID: PMC10377097 DOI: 10.3390/biom13071031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, thereby regulating biochemical pathways. During hemolysis, excess heme, which is released into the plasma, can bind to proteins and regulate their activity and function. The role of heme in these processes is under-investigated, with one problem being the lack of knowledge concerning recognition mechanisms for the initial association of heme with the target protein and the formation of the resulting complex. A specific heme-binding sequence motif is a prerequisite for such complex formation. Although numerous short signature sequences indicating a particular protein function are known, a comprehensive analysis of the heme-binding motifs (HBMs) which have been identified in proteins, concerning specific patterns and structural peculiarities, is missing. In this report, we focus on the evaluation of known mammalian heme-regulated proteins concerning specific recognition and structural patterns in their HBMs. The Cys-Pro dipeptide motifs are particularly emphasized because of their more frequent occurrence. This analysis presents a comparative insight into the sequence and structural anomalies observed during transient heme binding, and consequently, in the regulation of the relevant protein.
Collapse
Affiliation(s)
- Dhruv C Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Sonali M Vaidya
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, University of Koblenz, D-56070 Koblenz, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
7
|
Kupke T, Götz RM, Richter FM, Beck R, Lolicato F, Nickel W, Hopf C, Brügger B. In vivo characterization of the bacterial intramembrane-cleaving protease RseP using the heme binding tag-based assay iCliPSpy. Commun Biol 2023; 6:287. [PMID: 36934128 PMCID: PMC10024687 DOI: 10.1038/s42003-023-04654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
Regulated intramembrane proteolysis (RIP) describes the protease-dependent cleavage of transmembrane proteins within the hydrophobic core of cellular membranes. Intramembrane-cleaving proteases (I-CliPs) that catalyze these reactions are found in all kingdoms of life and are involved in a wide range of cellular processes, including signaling and protein homeostasis. I-CLiPs are multispanning membrane proteins and represent challenging targets in structural and enzyme biology. Here we introduce iCLiPSpy, a simple assay to study I-CLiPs in vivo. To allow easy detection of enzyme activity, we developed a heme-binding reporter based on TNFα that changes color after I-CLiP-mediated proteolysis. Co-expression of the protease and reporter in Escherichia coli (E. coli) results in white or green colonies, depending on the activity of the protease. As a proof of concept, we use this assay to study the bacterial intramembrane-cleaving zinc metalloprotease RseP in vivo. iCLiPSpy expands the methodological repertoire for identifying residues important for substrate binding or activity of I-CLiPs and can in principle be adapted to a screening assay for the identification of inhibitors or activators of I-CLiPs, which is of great interest for proteases being explored as biomedical targets.
Collapse
Affiliation(s)
- Thomas Kupke
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| | - Rabea M Götz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Florian M Richter
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Rainer Beck
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Yuan Y, Xiong X, Li L, Luo P. Novel targets in renal fibrosis based on bioinformatic analysis. Front Genet 2022; 13:1046854. [PMID: 36523757 PMCID: PMC9745177 DOI: 10.3389/fgene.2022.1046854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/25/2022] [Indexed: 08/14/2024] Open
Abstract
Background: Renal fibrosis is a widely used pathological indicator of progressive chronic kidney disease (CKD), and renal fibrosis mediates most progressive renal diseases as a final pathway. Nevertheless, the key genes related to the host response are still unclear. In this study, the potential gene network, signaling pathways, and key genes under unilateral ureteral obstruction (UUO) model in mouse kidneys were investigated by integrating two transcriptional data profiles. Methods: The mice were exposed to UUO surgery in two independent experiments. After 7 days, two datasets were sequenced from mice kidney tissues, respectively, and the transcriptome data were analyzed to identify the differentially expressed genes (DEGs). Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were executed. A Protein-Protein Interaction (PPI) network was constructed based on an online database STRING. Additionally, hub genes were identified and shown, and their expression levels were investigated in a public dataset and confirmed by quantitative real time-PCR (qRT-PCR) in vivo. Results: A total of 537 DEGs were shared by the two datasets. GO and the KEGG analysis showed that DEGs were typically enriched in seven pathways. Specifically, five hub genes (Bmp1, CD74, Fcer1g, Icam1, H2-Eb1) were identified by performing the 12 scoring methods in cytoHubba, and the receiver operating characteristic (ROC) curve indicated that the hub genes could be served as biomarkers. Conclusion: A gene network reflecting the transcriptome signature in CKD was established. The five hub genes identified in this study are potentially useful for the treatment and/or diagnosis CKD as biomarkers.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Dastidar DG, Ghosh D, Das A. Recent developments in nanocarriers for cancer chemotherapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Roumenina LT, Dimitrov JD. Assessment of the breadth of binding promiscuity of heme towards human proteins. Biol Chem 2022; 403:1083-1090. [PMID: 36254402 DOI: 10.1515/hsz-2022-0226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022]
Abstract
Heme regulates important biological processes by transient interactions with many human proteins. The goal of the present study was to assess extends of protein binding promiscuity of heme. To this end we evaluated interaction of heme with >9000 human proteins. Heme manifested high binding promiscuity by binding to most of the proteins in the array. Nevertheless, some proteins have outstanding heme binding capacity. Bioinformatics analyses revealed that apart from typical haemoproteins, these proteins are frequently involved in metal binding or have the potential to recognize DNA. This study can contribute for understanding the regulatory functions of labile heme.
Collapse
Affiliation(s)
- Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers 15, rue de l'Ecole de Médecine, F-75006 Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers 15, rue de l'Ecole de Médecine, F-75006 Paris, France
| |
Collapse
|
11
|
Teixeira LR, Fernandes TM, Silva MA, Morgado L, Salgueiro CA. Characterization of a Novel Cytochrome Involved in
Geobacter sulfurreducens’
Electron Harvesting Pathways. Chemistry 2022; 28:e202202333. [DOI: 10.1002/chem.202202333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Liliana R. Teixeira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| | - Tomás M. Fernandes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| | - Marta A. Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| |
Collapse
|
12
|
Sankari S, Babu VM, Bian K, Alhhazmi A, Andorfer MC, Avalos DM, Smith TA, Yoon K, Drennan CL, Yaffe MB, Lourido S, Walker GC. A haem-sequestering plant peptide promotes iron uptake in symbiotic bacteria. Nat Microbiol 2022; 7:1453-1465. [PMID: 35953657 PMCID: PMC9420810 DOI: 10.1038/s41564-022-01192-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Symbiotic partnerships with rhizobial bacteria enable legumes to grow without nitrogen fertilizer because rhizobia convert atmospheric nitrogen gas into ammonia via nitrogenase. After Sinorhizobium meliloti penetrate the root nodules that they have elicited in Medicago truncatula, the plant produces a family of about 700 nodule cysteine-rich (NCR) peptides that guide the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. The sequences of the NCR peptides are related to the defensin class of antimicrobial peptides, but have been adapted to play symbiotic roles. Using a variety of spectroscopic, biophysical and biochemical techniques, we show here that the most extensively characterized NCR peptide, 24 amino acid NCR247, binds haem with nanomolar affinity. Bound haem molecules and their iron are initially made biologically inaccessible through the formation of hexamers (6 haem/6 NCR247) and then higher-order complexes. We present evidence that NCR247 is crucial for effective nitrogen-fixing symbiosis. We propose that by sequestering haem and its bound iron, NCR247 creates a physiological state of haem deprivation. This in turn induces an iron-starvation response in rhizobia that results in iron import, which itself is required for nitrogenase activity. Using the same methods as for L-NCR247, we show that the D-enantiomer of NCR247 can bind and sequester haem in an equivalent manner. The special abilities of NCR247 and its D-enantiomer to sequester haem suggest a broad range of potential applications related to human health.
Collapse
Affiliation(s)
- Siva Sankari
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vignesh M.P. Babu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ke Bian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Areej Alhhazmi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mary C. Andorfer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Dante M. Avalos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Tyler A. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kwan Yoon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Catherine L. Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Michael B. Yaffe
- Departments of Biology and Biological Engineering, and Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA 02139, USA.,Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Sebastian Lourido
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
13
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
14
|
de Souza PVS, Badia BDML, Farias IB, Pinto WBVDR, Oliveira ASB. Acute Hepatic Porphyria: Pathophysiological Basis of Neuromuscular Manifestations. Front Neurosci 2021; 15:715523. [PMID: 34646118 PMCID: PMC8502968 DOI: 10.3389/fnins.2021.715523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Acute hepatic porphyria represents a rare, underdiagnosed group of inherited metabolic disorders due to hereditary defects of heme group biosynthesis pathway. Most patients have their definite diagnosis after several years of complex and disabling clinical manifestations and commonly after life-threatening acute neurovisceral episodes or severe motor handicap. Many key studies in the last two decades have been performed and led to the discovery of novel possible diagnostic and prognostic biomarkers and to the development of new therapeutic purposes, including small interfering RNA-based therapy, specifically driven to inhibit selectively delta-aminolevulinic acid synthase production and decrease the recurrence number of severe acute presentation for most patients. Several distinct mechanisms have been identified to contribute to the several neuromuscular signs and symptoms. This review article aims to present the current knowledge regarding the main pathophysiological mechanisms involved with the acute and chronic presentation of acute hepatic porphyria and to highlight the relevance of such content for clinical practice and in decision making about therapeutic options.
Collapse
Affiliation(s)
- Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruno de Mattos Lombardi Badia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Igor Braga Farias
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
15
|
Cao Y, Yang R, Lee I, Zhang W, Sun J, Wang W, Meng X. Characterization of the SARS-CoV-2 E Protein: Sequence, Structure, Viroporin, and Inhibitors. Protein Sci 2021; 30:1114-1130. [PMID: 33813796 PMCID: PMC8138525 DOI: 10.1002/pro.4075] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS-CoV-2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS-CoV-2 E protein and by comparing it with the SARS-CoV E protein. The E protein amino acid sequence, structure, self-assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS-CoV-2 and SARS-CoV E proteins are similar in many respects, specific studies on the SARS-CoV-2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
- National Supercomputer Center in TianjinTEDA‐Tianjin Economic‐Technological Development AreaTianjinPeople's Republic of China
| | - Rui Yang
- Department of Infection and ImmunityTianjin Union Medical Center, Nankai University Affiliated HospitalTianjinPeople's Republic of China
| | - Imshik Lee
- College of PhysicsNankai UniversityTianjinPeople's Republic of China
| | - Wenwen Zhang
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Jiana Sun
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and HospitalKey Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for CancerTianjinPeople's Republic of China
| | - Xiangfei Meng
- National Supercomputer Center in TianjinTEDA‐Tianjin Economic‐Technological Development AreaTianjinPeople's Republic of China
| |
Collapse
|
16
|
Hopp MT, Domingo-Fernández D, Gadiya Y, Detzel MS, Graf R, Schmalohr BF, Kodamullil AT, Imhof D, Hofmann-Apitius M. Linking COVID-19 and Heme-Driven Pathophysiologies: A Combined Computational-Experimental Approach. Biomolecules 2021; 11:biom11050644. [PMID: 33925394 PMCID: PMC8147026 DOI: 10.3390/biom11050644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 outbreak was declared a worldwide pandemic in 2020. Infection triggers the respiratory tract disease COVID-19, which is accompanied by serious changes in clinical biomarkers such as hemoglobin and interleukins. The same parameters are altered during hemolysis, which is characterized by an increase in labile heme. We present two computational–experimental approaches aimed at analyzing a potential link between heme-related and COVID-19 pathophysiologies. Herein, we performed a detailed analysis of the common pathways induced by heme and SARS-CoV-2 by superimposition of knowledge graphs covering heme biology and COVID-19 pathophysiology. Focus was laid on inflammatory pathways and distinct biomarkers as the linking elements. In a second approach, four COVID-19-related proteins, the host cell proteins ACE2 and TMPRSS2 as well as the viral proteins 7a and S protein were computationally analyzed as potential heme-binding proteins with an experimental validation. The results contribute to the understanding of the progression of COVID-19 infections in patients with different clinical backgrounds and may allow for a more individual diagnosis and therapy in the future.
Collapse
Affiliation(s)
- Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany; (D.D.-F.); (Y.G.); (A.T.K.)
- Enveda Biosciences, Inc., San Francisco, CA 94080, USA
| | - Yojana Gadiya
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany; (D.D.-F.); (Y.G.); (A.T.K.)
| | - Milena S. Detzel
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
| | - Regina Graf
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
| | - Benjamin F. Schmalohr
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
| | - Alpha T. Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany; (D.D.-F.); (Y.G.); (A.T.K.)
- Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin, Kerala 683503, India
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
- Correspondence: (D.I.); (M.H.-A.)
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany; (D.D.-F.); (Y.G.); (A.T.K.)
- Correspondence: (D.I.); (M.H.-A.)
| |
Collapse
|
17
|
Signal Peptide Peptidase-Type Proteases: Versatile Regulators with Functions Ranging from Limited Proteolysis to Protein Degradation. J Mol Biol 2020; 432:5063-5078. [DOI: 10.1016/j.jmb.2020.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
|