1
|
Ding D, Guo J, Sun H, Yang J. Modulation of host Rab GTPases by Salmonella: mechanisms of immune evasion and intracellular replication. Mol Biol Rep 2025; 52:440. [PMID: 40304792 DOI: 10.1007/s11033-025-10547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Salmonella is one of the major pathogens responsible for foodborne illnesses worldwide, characterized by diverse serotypes and a broad host range. As an intracellular bacterium, Salmonella invades host cells and establishes a protected niche known as the Salmonella-containing vacuoles (SCVs), which provide a suitable environment for intracellular survival. Rab GTPases, key regulators of intracellular membrane trafficking, play a crucial role in the biogenesis and dynamics of SCVs. Through its type III secretion systems (T3SSs), Salmonella delivers a repertoire of effector proteins into host cells, which modulate the activity of Rab GTPases and alter membrane trafficking to facilitate SCVs formation and maintenance. This review summarizes recent advances in understanding how Salmonella effectors manipulate Rab GTPases to promote intracellular survival and evade host innate immune responses.
Collapse
Affiliation(s)
- Dandan Ding
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
2
|
Shi L, Fang X, Du L, Yang J, Xue J, Yue X, Xie D, Hui Y, Meng K. An E3 ligase TRIM1 promotes colorectal cancer progression via K63-linked ubiquitination and activation of HIF1α. Oncogenesis 2024; 13:16. [PMID: 38769340 PMCID: PMC11106307 DOI: 10.1038/s41389-024-00517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Accumulating studies have shown that E3 ligases play crucial roles in regulating cellular biological processes and signaling pathways during carcinogenesis via ubiquitination. Tripartite-motif (TRIM) ubiquitin E3 ligases consist of over 70 members. However, the clinical significance and their contributions to tumorigenesis remain largely unknown. In this study, we analyzed the RNA-sequencing expression of TRIM E3 ligases in colorectal cancer (CRC) and identified 10 differentially expressed genes, among which TRIM1 expression predicted poor prognosis of CRC patients. We demonstrated that TRIM1 expression is positively associated with CRC pathological stages, and higher expression is positively correlated with infiltrating levels of immune cells and immunotherapy biomarkers. TRIM1 expression promotes the proliferation and migration of colorectal cancer cells in vitro and in vivo. Transcriptional analysis showed that TRIM1 is responsible for metabolism promotion and immune suppression. Mechanistically, we found that TRIM1 binds HIF1α and mediates its K63-linked ubiquitination, which is required for HIF1α nuclear translocation and subsequent activation. Ubiquitination occurs at Lys214 in the loop between the two PAS domains of HIF1α, and mutation of Lys214 severely disturbs the function of HIF1α. Besides, HIF1α ubiquitination enhances its binding with proteins involved in cellular trafficking and nucleocytoplasmic transport pathway. Collectively, our results indicate TRIM1's role in predicting prognosis and reveal how TRIM1 functions to upregulate HIF1α expression and promote tumor cell proliferation.
Collapse
Affiliation(s)
- Liuliu Shi
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xianglan Fang
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lijie Du
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jin Yang
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Xue
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaokai Yue
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Duoshuang Xie
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Yuanjian Hui
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of General Surgery, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Kun Meng
- Institute of Infection and Immunity, Department of Infection Control, School of Public Health, Affiliated Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan, China.
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
3
|
Zhou M, Liu Y, Zhang Y, Ma Y, Zhang Y, Choi SH, Shao S, Wang Q. Type III secretion system effector YfiD inhibits the activation of host poly(ADP-ribose) polymerase-1 to promote bacterial infection. Commun Biol 2024; 7:162. [PMID: 38332126 PMCID: PMC10853565 DOI: 10.1038/s42003-024-05852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Modulation of cell death is a powerful strategy employed by pathogenic bacteria to evade host immune clearance and occupy profitable replication niches during infection. Intracellular pathogens employ the type III secretion system (T3SS) to deliver effectors, which interfere with regulated cell death pathways to evade immune defenses. Here, we reveal that poly(ADP-ribose) polymerase-1 (PARP1)-dependent cell death restrains Edwardsiella piscicida's proliferation in mouse monocyte macrophages J774A.1, of which PARP1 activation results in the accumulation of poly(ADP-ribose) (PAR) and enhanced inflammatory response. Moreover, E. piscicida, an important intracellular pathogen, leverages a T3SS effector YfiD to impair PARP1's activity and inhibit PAR accumulation. Once translocated into the host nucleus, YfiD binds to the ADP-ribosyl transferase (ART) domain of PARP1 to suppress its PARylation ability as the pharmacological inhibitor of PARP1 behaves. Furthermore, the interaction between YfiD and ART mainly relies on the complete unfolding of the helical domain, which releases the inhibitory effect on ART. In addition, YfiD impairs the inflammatory response and cell death in macrophages and promotes in vivo colonization and virulence of E. piscicida. Collectively, our results establish the functional mechanism of YfiD as a potential PARP1 inhibitor and provide more insights into host defense against bacterial infection.
Collapse
Affiliation(s)
- Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yabo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
| | - Yuanxing Zhang
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Haosi Marine Biotechnology Co., Ltd, Shanghai, China
| |
Collapse
|
4
|
Sun Y, Zheng H, Qian L, Liu Y, Zhu D, Xu Z, Chang W, Xu J, Wang L, Sun B, Gu L, Yuan H, Lou H. Targeting GDP-Dissociation Inhibitor Beta (GDI2) with a Benzo[ a]quinolizidine Library to Induce Paraptosis for Cancer Therapy. JACS AU 2023; 3:2749-2762. [PMID: 37885576 PMCID: PMC10598831 DOI: 10.1021/jacsau.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Inducing paraptosis, a nonapoptotic form of cell death, has great therapeutic potential in cancer therapy, especially for drug-resistant tumors. However, the specific molecular target(s) that trigger paraptosis have not yet been deciphered yet. Herein, by using activity-based protein profiling, we identified the GDP-dissociation inhibitor beta (GDI2) as a manipulable target for inducing paraptosis and uncovered benzo[a]quinolizidine BQZ-485 as a potent inhibitor of GDI2 through the interaction with Tyr245. Comprehensive target validation revealed that BQZ-485 disrupts the intrinsic GDI2-Rab1A interaction, thereby abolishing vesicular transport from the endoplasmic reticulum (ER) to the Golgi apparatus and initiating subsequent paraptosis events including ER dilation and fusion, ER stress, the unfolded protein response, and cytoplasmic vacuolization. Based on the structure of BQZ-485, we created a small benzo[a]quinolizidine library by click chemistry and discovered more potent GDI2 inhibitors using a NanoLuc-based screening platform. Leveraging the engagement of BQZ-485 with GDI2, we developed a selective GDI2 degrader. The optimized inhibitor (+)-37 and degrader 21 described in this study exhibited excellent in vivo antitumor activity in two GDI2-overexpressing pancreatic xenograft models, including an AsPc-1 solid tumor model and a transplanted human PDAC tumor model. Altogether, our findings provide a promising strategy for targeting GDI2 for paraptosis in the treatment of pancreatic cancers, and these lead compounds could be further optimized to be effective chemotherapeutics.
Collapse
Affiliation(s)
- Yong Sun
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Lilin Qian
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Yue Liu
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Deyu Zhu
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zejun Xu
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Wenqiang Chang
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Jianwei Xu
- Department
of General Surgery, Qilu Hospital of Shandong
University, Jinan 250012, China
| | - Lei Wang
- Department
of General Surgery, Qilu Hospital of Shandong
University, Jinan 250012, China
| | - Bin Sun
- National
Glycoengineering Research Center, Shandong
University, Jinan 250100, China
| | - Lichuan Gu
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huiqing Yuan
- Key
Laboratory
of Experimental Teratology of the Ministry of Education, Institute
of Medical Sciences, The Second Hospital
of Shandong University, Jinan 250013, China
| | - Hongxiang Lou
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Meng K, Yang J, Xue J, Lv J, Zhu P, Shi L, Li S. A host E3 ubiquitin ligase regulates Salmonella virulence by targeting an SPI-2 effector involved in SIF biogenesis. MLIFE 2023; 2:141-158. [PMID: 38817622 PMCID: PMC10989757 DOI: 10.1002/mlf2.12063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 06/01/2024]
Abstract
Salmonella Typhimurium creates an intracellular niche for its replication by utilizing a large cohort of effectors, including several that function to interfere with host ubiquitin signaling. Although the mechanism of action of many such effectors has been elucidated, how the interplay between the host ubiquitin network and bacterial virulence factors dictates the outcome of infection largely remains undefined. In this study, we found that the SPI-2 effector SseK3 inhibits SNARE pairing to promote the formation of a Salmonella-induced filament by Arg-GlcNAcylation of SNARE proteins, including SNAP25, VAMP8, and Syntaxin. Further study reveals that host cells counteract the activity of SseK3 by inducing the expression of the E3 ubiquitin ligase TRIM32, which catalyzes K48-linked ubiquitination on SseK3 and targets its membrane-associated portion for degradation. Hence, TRIM32 antagonizes SNAP25 Arg-GlcNAcylation induced by SseK3 to restrict Salmonella-induced filament biogenesis and Salmonella replication. Our study reveals a mechanism by which host cells inhibit bacterial replication by eliminating specific virulence factors.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jin Yang
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Juan Xue
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jun Lv
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Liuliu Shi
- School of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Shan Li
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Wang DN, Ni JJ, Li JH, Gao YQ, Ni FJ, Zhang ZZ, Fang JY, Lu J, Yao YF. Bacterial infection promotes tumorigenesis of colorectal cancer via regulating CDC42 acetylation. PLoS Pathog 2023; 19:e1011189. [PMID: 36812247 PMCID: PMC9987831 DOI: 10.1371/journal.ppat.1011189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Increasing evidence highlights the role of bacteria in promoting tumorigenesis. The underlying mechanisms may be diverse and remain poorly understood. Here, we report that Salmonella infection leads to extensive de/acetylation changes in host cell proteins. The acetylation of mammalian cell division cycle 42 (CDC42), a member of the Rho family of GTPases involved in many crucial signaling pathways in cancer cells, is drastically reduced after bacterial infection. CDC42 is deacetylated by SIRT2 and acetylated by p300/CBP. Non-acetylated CDC42 at lysine 153 shows an impaired binding of its downstream effector PAK4 and an attenuated phosphorylation of p38 and JNK, consequently reduces cell apoptosis. The reduction in K153 acetylation also enhances the migration and invasion ability of colon cancer cells. The low level of K153 acetylation in patients with colorectal cancer (CRC) predicts a poor prognosis. Taken together, our findings suggest a new mechanism of bacterial infection-induced promotion of colorectal tumorigenesis by modulation of the CDC42-PAK axis through manipulation of CDC42 acetylation.
Collapse
Affiliation(s)
- Dan-Ni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Jing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hui Li
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ya-Qi Gao
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Jing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Zhen Zhang
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (JL); (Y-FY)
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
- * E-mail: (JL); (Y-FY)
| |
Collapse
|
9
|
Koh E, Kim U, Cho HS. Catalytic DxD motif caged in Asx-turn and Met-aromatic interaction attenuates the pathogenic glycosylation of SseK2/NleB2 effectors. Sci Rep 2022; 12:19288. [PMID: 36369343 PMCID: PMC9652389 DOI: 10.1038/s41598-022-22803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic bacteria encode virulent glycosyltransferases that conjugate various glycans onto host crucial proteins, which allows adhesion to mammalian cells and modulates host cellular processes for pathogenesis. Escherichia coli NleB1, Citrobacter rodentium NleB, and Salmonella enterica SseK1/3 type III effectors fatally glycosyltransfer N-acetyl glucosamine (GlcNAc) from UDP-GlcNAc to arginine residues of death domain-containing proteins that regulate host inflammation, intra-bacterial proteins, and themselves, whose post-translational modification disrupts host immune functions and prolongs bacterial viability inside host cells. However, unlike the similar NleB1/SseK1/SseK3, E. coli NleB2 and S. enterica SseK2 show deficient GlcNAcylation and neither intra-bacterial glycosylation nor auto-glycosylation. Here, as the major factor in SseK2/NleB2 deficiency, we focused on the catalytic Asp-x-Asp (DxD) motif conserved throughout all O-/N-glycosyltransferases to coordinate Mn2+. All DxD motifs in apo-glycosyltransferases form Type-I-turns for binding Mn2+, similar to the ligand-bound DxD motif, whereas TcnA/SseK2/NleB2 DxD motifs form Asx-turns, which are unable to bind Mn2+. Interestingly, methionine of the NleB2 DMD motif forms triple Met-aromatic interactions, as found in age-associated diseases and tumor necrosis factor (TNF) ligand-receptor complexes. The NleB1 A222M mutation induces triple Met-aromatic interactions to steeply attenuate glycosylation activity to 3% of that in the wild type. Thus, the characteristic conformation of the DxD motif is essential for binding Mn2+, donors, and glycosylate targets. This explains why SseK2/NleB2 effectors with the DxD motif caged in the Asp-/Asn-turn (Asx-turn) and triple Met-aromatic interactions have lower glycosyltransferase activity than that of other fatal NleB1/SseK1/SseK3 toxins.
Collapse
Affiliation(s)
- Eunhee Koh
- grid.15444.300000 0004 0470 5454Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Uijin Kim
- grid.15444.300000 0004 0470 5454Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Hyun-Soo Cho
- grid.15444.300000 0004 0470 5454Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| |
Collapse
|
10
|
Li T, Shi L, Liu W, Hu X, Hui Y, Di M, Xue S, Zheng Y, Yao M, Li C, Meng K. Aloe-Emodin Induces Mitochondrial Dysfunction and Pyroptosis by Activation of the Caspase-9/3/Gasdermin E Axis in HeLa Cells. Front Pharmacol 2022; 13:854526. [PMID: 35662735 PMCID: PMC9157280 DOI: 10.3389/fphar.2022.854526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 01/13/2023] Open
Abstract
Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), derived from some Chinese edible medicinal herbs, exerts a potential anticancer activity on various cancer cells, making it a drug candidate for cancer therapy. Yet, the role of aloe-emodin in pyroptosis, a new type of cell death, is uncharacterized. In this study, we explored the molecular mechanisms of aloe-emodin-triggered pyroptosis. Aloe-emodin inhibited proliferation and migration and triggered caspase-dependent cell death of HeLa cells in a dose-dependent manner. Aloe-emodin caused mitochondrial dysfunction and induced pyroptosis by activating the caspase-9/3/GSDME axis. Transcriptional analysis showed extensive changes in gene expressions in cellular pathways, including MAPK, p53, and PI3K-Akt pathways when treated with aloe-emodin. This study not only identified a novel role of aloe-emodin in pyroptotic cell death, but also performed a systematical genome-wide analysis of cellular pathways responding to aloe-emodin, providing a theoretical basis for applying anthraquinone derivatives in the treatment of GSDME-expressing cancers.
Collapse
Affiliation(s)
- Tonghui Li
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Liuliu Shi
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Wenqiang Liu
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Xuhao Hu
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Yuanjian Hui
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Maojun Di
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China
| | - Shen Xue
- Department of Obstetrics and Gynecology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Zheng
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,Department of Pharmacy, Hubei Aerospace Hospital, Xiaogan, China
| | - Mengjuan Yao
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Chen Li
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Institute of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China.,School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Kun Meng
- Department of General Surgery, Affiliated Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,School of Public Health, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
11
|
Torres-Sangiao E, Giddey AD, Leal Rodriguez C, Tang Z, Liu X, Soares NC. Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens. Front Med (Lausanne) 2022; 9:850374. [PMID: 35586072 PMCID: PMC9108449 DOI: 10.3389/fmed.2022.850374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Clinical Microbiology Lab, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Eva Torres-Sangiao,
| | - Alexander Dyason Giddey
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cristina Leal Rodriguez
- Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nelson C. Soares
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares,
| |
Collapse
|
12
|
Zhang Z, Li H, Gan H, Tang Z, Guo Y, Yao S, Liuyu T, Zhong B, Lin D. RNF115 Inhibits the Post-ER Trafficking of TLRs and TLRs-Mediated Immune Responses by Catalyzing K11-Linked Ubiquitination of RAB1A and RAB13. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105391. [PMID: 35343654 PMCID: PMC9165487 DOI: 10.1002/advs.202105391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/07/2022] [Indexed: 05/16/2023]
Abstract
The subcellular localization and intracellular trafficking of Toll-like receptors (TLRs) critically regulate TLRs-mediated antimicrobial immunity and autoimmunity. Here, it is demonstrated that the E3 ubiquitin ligase RNF115 inhibits the post-endoplasmic reticulum (ER) trafficking of TLRs and TLRs-mediated immune responses by catalyzing ubiquitination of the small GTPases RAB1A and RAB13. It is shown that the 14-3-3 chaperones bind to AKT1-phosphorylated RNF115 and facilitate RNF115 localizing on the ER and the Golgi apparatus. RNF115 interacts with RAB1A and RAB13 and catalyzes K11-linked ubiquitination on the Lys49 and Lys61 residues of RAB1A and on the Lys46 and Lys58 residues of RAB13, respectively. Such a modification impairs the recruitment of guanosine diphosphate (GDP) dissociation inhibitor 1 (GDI1) to RAB1A and RAB13, a prerequisite for the reactivation of RAB proteins. Consistently, knockdown of RAB1A and RAB13 in Rnf115+/+ and Rnf115-/- cells markedly inhibits the post-ER and the post-Golgi trafficking of TLRs, respectively. In addition, reconstitution of RAB1AK49/61R or RAB13K46/58R into Rnf115+/+ cells but not Rnf115-/- cells promotes the trafficking of TLRs from the ER to the Golgi apparatus and from the Golgi apparatus to the cell surface, respectively. These findings uncover a common and step-wise regulatory mechanism for the post-ER trafficking of TLRs.
Collapse
Affiliation(s)
- Zhi‐Dong Zhang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430061China
| | - Hong‐Xu Li
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hu Gan
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Zhen Tang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Yu‐Yao Guo
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Shu‐Qi Yao
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Tianzi Liuyu
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Dandan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430061China
| |
Collapse
|
13
|
Stévenin V, Neefjes J. Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chem Biol 2022; 29:741-756. [PMID: 35512694 DOI: 10.1016/j.chembiol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023]
Abstract
Intracellular bacteria have developed a multitude of mechanisms to influence the post-translational modifications (PTMs) of host proteins to pathogen advantages. The recent explosion of insights into the diversity and sophistication of host PTMs and their manipulation by infectious agents challenges us to formulate a comprehensive vision of this complex and dynamic facet of the host-pathogen interaction landscape. As new discoveries continue to shed light on the central roles of PTMs in infectious diseases, technological advances foster our capacity to detect old and new PTMs and investigate their control and impact during pathogenesis, opening new possibilities for chemical intervention and infection treatment. Here, we present a comprehensive overview of these pathogenic mechanisms and offer perspectives on how these insights may contribute to the development of a new class of therapeutics that are urgently needed to face rising antibiotic resistances.
Collapse
Affiliation(s)
- Virginie Stévenin
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands
| |
Collapse
|
14
|
Xue J, Huang Y, Zhang H, Hu J, Pan X, Peng T, Lv J, Meng K, Li S. Arginine GlcNAcylation and Activity Regulation of PhoP by a Type III Secretion System Effector in Salmonella. Front Microbiol 2022; 12:825743. [PMID: 35126337 PMCID: PMC8811161 DOI: 10.3389/fmicb.2021.825743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella type III secretion system (T3SS) effector SseK3 is a glycosyltransferase delivered directly into the host cells to modify host protein substrates, thus manipulating host cellular signal transduction. Here, we identify and characterize the Arg-GlcNAcylation activity of SseK3 inside bacterial cells. Combining Arg-GlcNAc protein immunoprecipitation and mass spectrometry, we found that 60 bacterial proteins were GlcNAcylated during Salmonella infection, especially the two-component signal transduction system regulatory protein PhoP. Moreover, the Arg-GlcNAcylation of PhoP by SseK3 was detected in vivo and in vitro, and four arginine residues, Arg65, Arg66, Arg118, and Arg215 were identified as the GlcNAcylation sites. Site-directed mutagenesis showed that the PhoP R215A change significantly reduced the DNA-binding ability and arginine to alanine change at all four sites (PhoP 4RA) completely eliminated the DNA-binding ability, suggesting that Arg215 is essential for the DNA-binding activity of PhoP and GlcNAcylation of PhoP affects this activity. Additionally, GlcNAcylation of PhoP negatively regulated the activity of PhoP and decreased the expression of its downstream genes. Overall, our work provides an example of the intra-bacterial activities of the T3SS effectors and increases our understanding of endogenous Arg-GlcNAcylation.
Collapse
Affiliation(s)
- Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yuxuan Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jiaqingzi Hu
- Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Ting Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jun Lv
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shan Li,
| |
Collapse
|
15
|
Abstract
Autophagy is a fundamental cellular process that has important roles in innate and adaptive immunity against a broad range of microbes. Many pathogenic microbes have evolved mechanisms to evade or exploit autophagy. It has been previously demonstrated that induction of autophagy can suppress the intracellular survival of mycobacteria, and several PE_PGRS family proteins of Mycobacterium tuberculosis have been proposed to act as inhibitors of autophagy to promote mycobacterial survival. However, the mechanisms by which these effectors inhibit autophagy have not been defined. Here, we report detailed studies of M. tuberculosis deletion mutants of two genes, pe_pgrs20 and pe_pgrs47, that we previously reported as having a role in preventing autophagy of infected host cells. These mutants resulted in increased autophagy and reduced intracellular survival of M. tuberculosis in macrophages. This phenotype was accompanied by increased cytokine production and antigen presentation by infected cells. We further demonstrated that autophagy inhibition by PE_PGRS20 and PE_PGRS47 resulted from canonical autophagy rather than autophagy flux inhibition. Using macrophages transfected to express PE_PGRS20 or PE_PGRS47, we showed that these proteins inhibited autophagy initiation directly by interacting with Ras-related protein Rab1A. Silencing of Rab1A in mammalian cells rescued the survival defects of the pe_pgrs20 and pe_pgrs47 deletion mutant strains and reduced cytokine secretion. To our knowledge, this is the first study to identify mycobacterial effectors that directly interact with host proteins responsible for autophagy initiation. IMPORTANCE Tuberculosis is a significant global infectious disease caused by infection of the lungs with Mycobacterium tuberculosis, which then resides and replicates mainly within host phagocytic cells. Autophagy is a complex host cellular process that helps control intracellular infections and enhance innate and adaptive immune responses. During coevolution with humans, M. tuberculosis has acquired various mechanisms to inhibit host cellular processes, including autophagy. We identified two related M. tuberculosis proteins, PE_PGRS20 and PE_PGRS47, as the first reported examples of specific mycobacterial effectors interfering with the initiation stage of autophagy. Autophagy regulation by these PE_PGRS proteins leads to increased bacterial survival in phagocytic cells and increased autophagic degradation of mycobacterial antigens to stimulate adaptive immune responses. A better understanding of how M. tuberculosis regulates autophagy in host cells could facilitate the design of new and more effective therapeutics or vaccines against tuberculosis.
Collapse
|
16
|
Giogha C, Scott NE, Wong Fok Lung T, Pollock GL, Harper M, Goddard-Borger ED, Pearson JS, Hartland EL. NleB2 from enteropathogenic Escherichia coli is a novel arginine-glucose transferase effector. PLoS Pathog 2021; 17:e1009658. [PMID: 34133469 PMCID: PMC8238200 DOI: 10.1371/journal.ppat.1009658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/28/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation. Bacterial gut pathogens including enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC), manipulate host cell function by using a type III secretion system to inject ‘effector’ proteins directly into the host cell cytoplasm. We and others have shown that many of these effectors are novel enzymes, including NleB1, which transfers a single N-acetylglucosamine (GlcNAc) sugar to arginine residues, mediating Arg-GlcNAc glycosylation. Here, we found that a close homologue of NleB1 that is also present in EPEC and EHEC termed NleB2, uses a different sugar during glycosylation. We demonstrated that in contrast to NleB1, the preferred nucleotide-sugar substrate of NleB2 is UDP-glucose and we identified the amino acid residue within NleB2 that dictates this unique catalytic activity. Substitution of this residue in NleB2 and NleB1 switches the sugar donor usage of these enzymes but does not affect their ability to inhibit host cell signalling. Thus, NleB2 is the first identified bacterial arginine-glucose transferase, an activity which has previously only been described in plants and algae.
Collapse
Affiliation(s)
- Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ethan D. Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
Solano-Collado V, Colamarino RA, Calderwood DA, Baldassarre M, Spanò S. A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth. Front Cell Infect Microbiol 2021; 11:660689. [PMID: 33898333 PMCID: PMC8059790 DOI: 10.3389/fcimb.2021.660689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023] Open
Abstract
Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S. Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic S. Typhi infection, the mechanisms that macrophages use to control the growth of S. Typhi and the role of these mechanisms in the bacterium's adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of S. Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled S. Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict S. Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls S. Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in S. Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of S. Typhi and other intracellular pathogens in primary immune cells.
Collapse
Affiliation(s)
| | | | - David A. Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Stefania Spanò
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
18
|
Koh E, Cho HS. NleB/SseKs ortholog effectors as a general bacterial monoglycosyltransferase for eukaryotic proteins. Curr Opin Struct Biol 2021; 68:215-223. [PMID: 33761453 DOI: 10.1016/j.sbi.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
Protein glycosylation is the most common post-translational modification as more than 50% of all human proteins are glycosylated. Pathogenic bacteria glycosylation allows adhesion to host cells and manipulates eukaryotic functions. A variety of acceptor proteins in bacterial glycosylation was recently discovered. Especially NleB/SseKs type III effectors unexpectedly glycosylate a poor nucleophile arginine. Other pathogenic toxins modify the unusual tyrosine, as well as canonical serine/threonine residues. And a huge diversity is found in target proteins; Rho/Ras families, death domains and moreover themselves for autoglycosylation. However, in spite of this acceptor diversity, all their sugar donors are only UDP-Glc/-GlcNAc and structural alignments as liganded show their catalytic cores are geometrically conserved, where DRY and DXD motives and W residues equally position to hold the sugar donors and to π-π bind with a uridine ring, respectively. Therefore, bacterial glycosyltransferases have a key for carbohydrate research problems concerning the sugar donors and target proteins recognition.
Collapse
Affiliation(s)
- Eunhee Koh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
19
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
20
|
Mak H, Thurston TLM. Interesting Biochemistries in the Structure and Function of Bacterial Effectors. Front Cell Infect Microbiol 2021; 11:608860. [PMID: 33718265 PMCID: PMC7943720 DOI: 10.3389/fcimb.2021.608860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial effector proteins, delivered into host cells by specialized multiprotein secretion systems, are a key mediator of bacterial pathogenesis. Following delivery, they modulate a range of host cellular processes and functions. Strong selective pressures have resulted in bacterial effectors evolving unique structures that can mimic host protein biochemical activity or enable novel and distinct biochemistries. Despite the protein structure-function paradigm, effectors from different bacterial species that share biochemical activities, such as the conjugation of ubiquitin to a substrate, do not necessarily share structural or sequence homology to each other or the eukaryotic proteins that carry out the same function. Furthermore, some bacterial effectors have evolved structural variations to known protein folds which enable different or additional biochemical and physiological functions. Despite the overall low occurrence of intrinsically disordered proteins or regions in prokaryotic proteomes compared to eukaryotes proteomes, bacterial effectors appear to have adopted intrinsically disordered regions that mimic the disordered regions of eukaryotic signaling proteins. In this review, we explore examples of the diverse biochemical properties found in bacterial effectors that enable effector-mediated interference of eukaryotic signaling pathways and ultimately support pathogenesis. Despite challenges in the structural and functional characterisation of effectors, recent progress has been made in understanding the often unusual and fascinating ways in which these virulence factors promote pathogenesis. Nevertheless, continued work is essential to reveal the array of remarkable activities displayed by effectors.
Collapse
Affiliation(s)
| | - Teresa L. M. Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Gan J, Scott NE, Newson JPM, Wibawa RR, Wong Fok Lung T, Pollock GL, Ng GZ, van Driel I, Pearson JS, Hartland EL, Giogha C. The Salmonella Effector SseK3 Targets Small Rab GTPases. Front Cell Infect Microbiol 2020; 10:419. [PMID: 32974215 PMCID: PMC7466453 DOI: 10.3389/fcimb.2020.00419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
During infection, Salmonella species inject multiple type III secretion system (T3SS) effector proteins into host cells that mediate invasion and subsequent intracellular replication. At early stages of infection, Salmonella exploits key regulators of host intracellular vesicle transport, including the small GTPases Rab5 and Rab7, to subvert host endocytic vesicle trafficking and establish the Salmonella-containing vacuole (SCV). At later stages of intracellular replication, interactions of the SCV with Rab GTPases are less well defined. Here we report that Rab1, Rab5, and Rab11 are modified at later stages of Salmonella infection by SseK3, an arginine N-acetylglucosamine (GlcNAc) transferase effector translocated via the Salmonella pathogenicity island 2 (SPI-2) type III secretion system. SseK3 modified arginines at positions 74, 82, and 111 within Rab1 and this modification occurred independently of Rab1 nucleotide binding. SseK3 exhibited Golgi localization that was independent of its glycosyltransferase activity but Arg-GlcNAc transferase activity was required for inhibition of alkaline phosphatase secretion in transfected cells. While SseK3 had a modest effect on SEAP secretion during infection of HeLa229 cells, inhibition of IL-1 and GM-CSF cytokine secretion was only observed upon over-expression of SseK3 during infection of RAW264.7 cells. Our results suggest that, in addition to targeting death receptor signaling, SseK3 may contribute to Salmonella infection by interfering with the activity of key Rab GTPases.
Collapse
Affiliation(s)
- Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Joshua P. M. Newson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rachelia R. Wibawa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georgina L. Pollock
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Garrett Z. Ng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Ian van Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| |
Collapse
|
22
|
Xue J, Hu S, Huang Y, Zhang Q, Yi X, Pan X, Li S. Arg-GlcNAcylation on TRADD by NleB and SseK1 Is Crucial for Bacterial Pathogenesis. Front Cell Dev Biol 2020; 8:641. [PMID: 32766249 PMCID: PMC7379376 DOI: 10.3389/fcell.2020.00641] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Death receptor signaling is critical for cell death, inflammation, and immune homeostasis. Hijacking death receptors and their corresponding adaptors through type III secretion system (T3SS) effectors has been evolved to be a bacterial evasion strategy. NleB from enteropathogenic Escherichia coli (EPEC) and SseK1/2/3 from Salmonella enterica serovar Typhimurium (S. Typhimurium) can modify some death domain (DD) proteins through arginine-GlcNAcylation. Here, we performed a substrate screen on 12 host DD proteins with conserved arginine during EPEC and Salmonella infection. NleB from EPEC hijacked death receptor signaling through tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein (TRADD), FAS-associated death domain protein (FADD), and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), whereas SseK1 and SseK3 disturbed TNF signaling through the modification of TRADD Arg235/Arg245 and TNFR1 Arg376, respectively. Furthermore, mouse infection studies showed that SseK1 but not SseK3 rescued the bacterial colonization deficiency contributed by the deletion of NleBc (Citrobacter NleB), indicating that TRADD was the in vivo substrate. The result provides an insight into the mechanism by which attaching and effacing (A/E) pathogen manipulate TRADD-mediated signaling and evade host immune defense through T3SS effectors.
Collapse
Affiliation(s)
- Juan Xue
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Shufan Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yuxuan Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Qi Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xueying Yi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xing Pan
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Shan Li
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|