1
|
Wang Q, Zhang Y, Ma K, Lin P, Wang Y, Wang R, Li H, Li Z, Wang G. Plexin B2 in physiology and pathophysiology of the central nervous system. Int Immunopharmacol 2025; 155:114627. [PMID: 40220620 DOI: 10.1016/j.intimp.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
The Plexin protein family was initially found in 1995, comprising subfamilies from Plexin A to Plexin D. Plexin B2, a member of the Plexin subfamily, has widespread expression in many human organs and tissues, particularly in the nervous system where expression levels are significantly heightened. The biological roles of Plexin B2 are mostly determined by its protein structure and functional domains. These domains regulate the binding selectivity and affinity for ligands. Ligand binding activates signal transduction pathways, resulting in regulatory effects on several biological processes. This includes managing brain growth and change, keeping angiogenesis and vascular homeostasis in check, and preventing the start, growth, and metastasis of cancer. Plexin B2 has also been associated with the onset of many nervous system illnesses. Plexin B2 aids in the invasion and spread of malignant cells, facilitates nerve healing following spinal cord damage, and plays a role in the etiology of schizophrenia. This article thoroughly examines the existing research on Plexin B2 and its importance in central nervous system biology. Simultaneously, it investigates the regulatory function of Plexin B2 across many cell types in the central nervous system, specifically neural stem cells, neurons, microglia, and astrocytes. This study examines the current knowledge of Plexin B2's role in central nervous system diseases, including schizophrenia, spinal cord injury, neuroblastoma, and fear memory. Overall, the prospects for the clinical translation of Plexin B2 are promising. However, challenges related to specificity and drug delivery must be addressed. Future research could explore the integration of nanodrug delivery systems to enhance the clinical application of Plexin B2-targeted therapies.
Collapse
Affiliation(s)
- Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Kaixuan Ma
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Peng Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Ran Wang
- School of Pharmacy, Harbin Medical University, Daqing, Heilongjiang 163319, China
| | - He Li
- Department of Parasitology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Guangtian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China; Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
2
|
Liu H, Hamaia SW, Dobson L, Weng J, Hernández FL, Beaudoin CA, Salvage SC, Huang CLH, Machesky LM, Jackson AP. The voltage-gated sodium channel β3 subunit modulates C6 glioma cell motility independently of channel activity. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167844. [PMID: 40245999 DOI: 10.1016/j.bbadis.2025.167844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Voltage-gated sodium channels (VGSCs) initiate action potentials in nerve and muscle cells and are regulated by auxiliary β subunits. VGSC β subunits are also expressed in some cancer types, suggesting potential functions distinct from their role in electrophysiological excitability. This study investigated the occurrence and functional implications of the VGSC β3 subunit (the product of SCN3B gene) in glioma, focusing on the role of its extracellular immunoglobulin domain (β3 Ig). METHODS Data mining explored associations between β3 expression and glioma severity at patient, tissue, and single-cell levels. Using C6 glioma cells expressing β3 or β3 without its Ig domain, we examined the effects on cell viability, mobility, and actin-based cell protrusions. A single-chain variable fragment (scFv) antibody targeting the β3 Ig was selected by phage display to interfere with its functions. The interacting proteins with β3 Ig were identified by immunoprecipitation-mass spectrometry. RESULTS Data mining revealed negative correlations between β3 expression and glioma severity and aggressiveness. Expression of β3 in C6 cells reduced cell migration and invasion without affecting cell viability. Filopodia were significantly increased while lamellipodia/ruffles were decreased, producing striking cell morphological changes. These effects were abrogated by expression of the β3 subunit lacking the β3 Ig domain or exogenous application of an scFv targeting β3 Ig. Most of the plasma membrane-associated proteins immunoprecipitated with the β3 subunit are known regulators of actin polymerization. CONCLUSION Our data reveals a novel and unexpected role for the VGSC β3 subunit in orchestrating actin organization and negatively regulating cell migration in glioma cells which may potentially explain clinical correlations with glioma severity.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Samir W Hamaia
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Lisa Dobson
- Department of Biochemistry, Sanger Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Federico López Hernández
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Christopher A Beaudoin
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Samantha C Salvage
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3DY, UK
| | - Laura M Machesky
- Department of Biochemistry, Sanger Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
3
|
Rivera D, Bouras A, Mattioli M, Anastasiadou M, Pacentra AC, Pelcher O, Koziel C, Schupper AJ, Chanenchuk T, Carlton H, Ivkov R, Hadjipanayis CG. Magnetic hyperthermia therapy enhances the chemoradiosensitivity of glioblastoma. Sci Rep 2025; 15:10532. [PMID: 40148452 PMCID: PMC11950323 DOI: 10.1038/s41598-025-95544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer and is resistant to standard-of-care chemoradiation therapy (CRT). Magnetic hyperthermia therapy (MHT) exposes magnetic iron oxide nanoparticles (MIONPs) to an alternating magnetic field (AMF) to generate local hyperthermia. This study evaluated MHT-mediated enhancement of CRT in preclinical GBM models. Cell viability and apoptosis were assessed in GBM cell lines after water bath heating with radiation and/or temozolomide. Heating efficiency of MIONPs after intracranial delivery was measured in healthy mice. MHT with CRT was performed in syngeneic and patient-derived xenograft (PDX) GBM tumors. Tissue sections were analyzed for γ-H2AX, HSP90, CD4 + T cells, and microglial cells. Tumor burden and survival were assessed. Hyperthermia with radiation and temozolomide significantly reduced cell viability and increased apoptosis. Hyperthermia predominantly exhibited additive to synergistic interactions with both treatment modalities and reduced doses needed for tumor cell growth inhibition. In vivo, MHT with CRT decreased tumor burden and increased survival in PDX and syngeneic models. Immunohistochemistry showed increased γ-H2AX, HSP90, microglial activation, and CD4 + T cells after MHT in combination with CRT. Overall, adjuvant hyperthermia enhances CRT efficacy in GBM cells, with MHT improving survival outcomes in rodents. Sufficient intracranial heating and MIONP retention for repeated treatments was achieved, supporting further clinical translation.
Collapse
Affiliation(s)
- Daniel Rivera
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA, 15213, USA
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA, 15213, USA
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Milena Mattioli
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA, 15213, USA
| | - Maria Anastasiadou
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Anna Chiara Pacentra
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA, 15213, USA
| | - Olivia Pelcher
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA, 15213, USA
| | - Corrine Koziel
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA, 15213, USA
| | - Alexander J Schupper
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Tori Chanenchuk
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Hayden Carlton
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Constantinos G Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA, 15213, USA.
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
4
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
5
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Silva Ladeira J, Fernandes da Costa Franklin P, de Paula Dutra de Nigro N, Alves Dias R, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger PA, Costa KD, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. Nat Commun 2025; 16:272. [PMID: 39747004 PMCID: PMC11697315 DOI: 10.1038/s41467-024-55056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor with diffuse infiltration. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 for confined migration through restricted space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal endocytic vesicle accumulation at cell front and filamentous actin assembly at cell rear in a polarized manner. These processes are interconnected and require Plexin-B2 signaling. We further show that Plexin-B2 governs membrane tension and other membrane features such as endocytosis, phospholipid composition, and inner leaflet surface charge, thus providing biophysical mechanisms by which Plexin-B2 promotes GBM invasion. Together, our studies unveil how GBM cells regulate membrane tension and mechano-electrical coupling to adapt to physical constraints and achieve polarized confined migration.
Collapse
Affiliation(s)
- Chrystian Junqueira Alves
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Theodore Hannah
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sita Sadia
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christy Kolsteeg
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela Dixon
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert J Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ha Nguyen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Murray J Tipping
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Júlia Silva Ladeira
- Department of Computer Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Rodrigo Alves Dias
- Department of Physics, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin D Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
6
|
Dias AP, Rehmani T, Salih M, Tuana B. Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis. Open Biol 2024; 14:240094. [PMID: 39378988 PMCID: PMC11461071 DOI: 10.1098/rsob.240094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 10/10/2024] Open
Abstract
The positioning and communication between the nucleus and centrosomes are essential in cell division, differentiation and tissue formation. During skeletal myogenesis, the nuclei become evenly spaced with the switch of the microtubule-organizing centre (MTOC) from the centrosome to the nuclear envelope (NE). We report that the tail-anchored sarcolemmal membrane associated protein 3 (SLMAP3), a component of the MTOC and NE, is crucial for myogenesis because its deletion in mice leads to a reduction in the NE-MTOC formation, mislocalization of the nuclei, dysregulation of the myogenic programme and abnormal embryonic myofibres. SLMAP3-/- myoblasts also displayed a similar disorganized distribution of nuclei with an aberrant NE-MTOC and defective myofibre formation and differentiation programming. We identified novel interactors of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1), AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain 2) and nuclear lamins, and observed that the distribution of centrosomal proteins at the NE together with Nesprin-1 was significantly altered by the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to negatively regulate Hippo signalling, but its loss was without impact on this pathway in developing muscle. These results reveal that SLMAP3 is essential for skeletal myogenesis through unique mechanisms involving the positioning of nuclei, NE-MTOC dynamics and gene programming.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| |
Collapse
|
7
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
8
|
Lee VK, Tejero R, Silvia N, Sattiraju A, Ramakrishnan A, Shen L, Wojcinski A, Kesari S, Friedel RH, Zou H, Dai G. 3D Brain Vascular Niche Model Captures Invasive Behavior and Gene Signatures of Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601756. [PMID: 39026692 PMCID: PMC11257506 DOI: 10.1101/2024.07.09.601756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Glioblastoma (GBM) is a lethal brain cancer with no effective treatment; understanding how GBM cells respond to tumor microenvironment remains challenging as conventional cell cultures lack proper cytoarchitecture while in vivo animal models present complexity all at once. Developing a culture system to bridge the gap is thus crucial. Here, we employed a multicellular approach using human glia and vascular cells to optimize a 3-dimensional (3D) brain vascular niche model that enabled not only long-term culture of patient derived GBM cells but also recapitulation of key features of GBM heterogeneity, in particular invasion behavior and vascular association. Comparative transcriptomics of identical patient derived GBM cells in 3D and in vivo xenotransplants models revealed that glia-vascular contact induced genes concerning neural/glia development, synaptic regulation, as well as immune suppression. This gene signature displayed region specific enrichment in the leading edge and microvascular proliferation zones in human GBM and predicted poor prognosis. Gene variance analysis also uncovered histone demethylation and xylosyltransferase activity as main themes for gene adaption of GBM cells in vivo . Furthermore, our 3D model also demonstrated the capacity to provide a quiescence and a protective niche against chemotherapy. In summary, an advanced 3D brain vascular model can bridge the gap between 2D cultures and in vivo models in capturing key features of GBM heterogeneity and unveil previously unrecognized influence of glia-vascular contact for transcriptional adaption in GBM cells featuring neural/synaptic interaction and immunosuppression.
Collapse
|
9
|
Smith CEL, Laugel-Haushalter V, Hany U, Best S, Taylor RL, Poulter JA, Wortmann SB, Feichtinger RG, Mayr JA, Al Bahlani S, Nikolopoulos G, Rigby A, Black GC, Watson CM, Mansour S, Inglehearn CF, Mighell AJ, Bloch-Zupan A. Biallelic variants in Plexin B2 ( PLXNB2) cause amelogenesis imperfecta, hearing loss and intellectual disability. J Med Genet 2024; 61:689-698. [PMID: 38458752 PMCID: PMC11228227 DOI: 10.1136/jmg-2023-109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.
Collapse
Affiliation(s)
- Claire E L Smith
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Virginie Laugel-Haushalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
| | - Ummey Hany
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Sunayna Best
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rachel L Taylor
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
- EMQN CIC, Manchester, UK
| | - James A Poulter
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Saskia B Wortmann
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Rene G Feichtinger
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
| | - Suhaila Al Bahlani
- Dental & OMFS Clinic, Al Nahdha Hospital, Government of Oman Ministry of Health, Muscat, Oman
| | | | - Alice Rigby
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- School of Dentistry, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Graeme C Black
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Christopher M Watson
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sahar Mansour
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, St George's Hospital, University of London, London, UK
- SW Thames Regional Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Chris F Inglehearn
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Alan J Mighell
- School of Dentistry, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Centre de référence des maladies rares orales et dentaires O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network CRANIO, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| |
Collapse
|
10
|
Li Y, Wang J, Song SR, Lv SQ, Qin JH, Yu SC. Models for evaluating glioblastoma invasion along white matter tracts. Trends Biotechnol 2024; 42:293-309. [PMID: 37806896 DOI: 10.1016/j.tibtech.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
White matter tracts (WMs) are one of the main invasion paths of glioblastoma multiforme (GBM). The lack of ideal research models hinders our understanding of the details and mechanisms of GBM invasion along WMs. To date, many potential in vitro models have been reported; nerve fiber culture models and nanomaterial models are biocompatible, and the former have electrically active neurons. Brain slice culture models, organoid models, and microfluidic chip models can simulate the real brain and tumor microenvironment (TME), which contains a variety of cell types. These models are closer to the real in vivo environment and are helpful for further studying not only invasion along WMs by GBM, but also perineural invasion and brain metastasis by solid tumors.
Collapse
Affiliation(s)
- Yao Li
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Chongqing 400037, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China
| | - Si-Rong Song
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Chongqing 400037, China
| | - Jian-Hua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Niaoning 116023, China.
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
11
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Ladeira JS, Franklin PFDC, Dutra de Nigro NDP, Dias RA, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger P, Costa K, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573660. [PMID: 38313256 PMCID: PMC10836082 DOI: 10.1101/2024.01.02.573660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Glioblastoma (GBM) is a malignant brain tumor with uncontrolled invasive growth. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 to gain biomechanical plasticity for polarized migration through confined space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal active endocytosis at cell front and filamentous actin assembly at rear to propel GBM cells through constrictions. These two processes are interconnected and governed by Plexin-B2 that orchestrates cortical actin and membrane tension, shown by biomechanical assays. Molecular dynamics simulations predict that balanced membrane and actin tension are required for optimal migratory velocity and consistency. Furthermore, Plexin-B2 mechanosensitive function requires a bendable extracellular ring structure and affects membrane internalization, permeability, phospholipid composition, as well as inner membrane surface charge. Together, our studies unveil a key element of membrane tension and mechanoelectrical coupling via Plexin-B2 that enables GBM cells to adapt to physical constraints and achieve polarized confined migration.
Collapse
|
12
|
Dai L, Shen KF, Zhang CQ. Plexin-mediated neuronal development and neuroinflammatory responses in the nervous system. Histol Histopathol 2023; 38:1239-1248. [PMID: 37170703 DOI: 10.14670/hh-18-625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plexins are a large family of single-pass transmembrane proteins that mediate semaphorin signaling in multiple systems. Plexins were originally characterized for their role modulating cytoskeletal activity to regulate axon guidance during nervous system development. Thereafter, different semaphorin-plexin complexes were identified in the nervous system that have diverse functions in neurons, astrocytes, glia, oligodendrocytes, and brain derived-tumor cells, providing unexpected but meaningful insights into the biological activities of this protein family. Here, we review the overall structure and relevant downstream signaling cascades of plexins. We consider the current knowledge regarding the function of semaphorin-plexin cascades in the nervous system, including the most recent data regarding their roles in neuronal development, neuroinflammation, and glioma.
Collapse
Affiliation(s)
- Lu Dai
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
13
|
Takeda T, Iwatsuki S, Nozaki S, Okada A, Mizuno K, Umemoto Y, Yasui T. Identification of active spermatogenesis using a multiphoton microscope. Andrology 2023; 11:1147-1156. [PMID: 36597184 DOI: 10.1111/andr.13379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND The sperm retrieval rate of microdissection testicular sperm extraction varies from 25% to 60%. Therefore, it is necessary to establish objective selection criteria for identifying seminiferous tubules with spermatozoa. OBJECTIVES Our aim was to develop a method for identifying spermatogenesis without sectioning testicular tissues. MATERIALS AND METHODS Testicular tissues of 10-week-old normal rats were fixed with 4% paraformaldehyde. Fluorescent labeling of seminiferous tubule nuclei and F-actin was performed, and the specimens were observed without sectioning using a multiphoton microscope. Cryptorchid rats were used as a model lacking elongated spermatids. Multiphoton images were compared with images of normal seminiferous tubules. In addition, seminiferous tubules of 10-week-old normal rats were labeled by testicular interstitial injection of fluorescent probes and observed by a multiphoton microscope without fixation. Terminal deoxynucleotidyl transferase dUTP nick end labeling-stained images of normal and probe-injected testes were compared. RESULTS In fixed seminiferous tubules, elongated spermatids were identified. In addition, F-actin of apical ectoplasmic specialization was observed around elongated spermatids. Furthermore, spermatogenic stages were identified by an array of nuclei or F-actin. In cryptorchid testes, elongated spermatids and F-actin of the apical ectoplasmic specialization were not observed. In testes injected with fluorescent probes, F-actin of the apical ectoplasmic specialization was observed, and spermatogenic stages were identified without fixation. There was no significant difference in the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells per seminiferous tubule between normal and probe-injected testes. CONCLUSIONS Seminiferous epithelium could be observed without sectioning of tissues by fluorescent probes and a multiphoton microscope. Active spermatogenesis was observed by labeling F-actin with and without fixation. Moreover, the toxicity of fluorescent probes was limited. Our method has a potential for live imaging of testicular tissue.
Collapse
Affiliation(s)
- Tomoki Takeda
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shoichiro Iwatsuki
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoshi Nozaki
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kentaro Mizuno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yukihiro Umemoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
14
|
Toledano S, Neufeld G. Plexins as Regulators of Cancer Cell Proliferation, Migration, and Invasivity. Cancers (Basel) 2023; 15:4046. [PMID: 37627074 PMCID: PMC10452846 DOI: 10.3390/cancers15164046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Plexins are a family of nine single-pass transmembrane receptors with a conserved GTPase activating protein (GAP) domain. The plexin family is divided into four subfamilies: Type-A, type-B, type-C, and type-D plexins. Plexins function as receptors for axon guidance factors of the semaphorin family. The semaphorin gene family contains 22 genes that are divided into eight subclasses of which subclasses three to seven represent vertebrate semaphorins. The plexins and their semaphorin ligands have important roles as regulators of angiogenesis, cancer proliferation, and metastasis. Class 3 semaphorins, with the exception of sema3E, are the only semaphorins that do not bind directly to plexins. In order to transduce their signals, they bind instead to complexes consisting of receptors of the neuropilin family and various plexins. Some plexins also form complexes with tyrosine-kinase receptors such as the epidermal growth factor receptor ErbB2, the mesenchymal epithelial transition factor receptor (MET), and the Vascular endothelial growth factor receptor 2 (VEGFR2) and, as a result, can modulate cell proliferation and tumor progression. This review focuses on the roles of the different plexins in the control of cancer cell proliferation and invasiveness. Plexins also affect tumor progression and tumor metastasis by indirect mechanisms, such as modulation of angiogenesis and immune responses. However, these topics are not covered in the present review.
Collapse
Affiliation(s)
| | - Gera Neufeld
- The Cancer Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109602, Israel;
| |
Collapse
|
15
|
Schuster E, Dashzeveg N, Jia Y, Golam K, Zhang T, Hoffman A, Zhang Y, Zheng C, Ramos E, Taftaf R, Shennawy LE, Scholten D, Kitata RB, Adorno-Cruz V, Reduzzi C, Spahija S, Xu R, Siziopikou KP, Platanias LC, Shah A, Gradishar WJ, Cristofanilli M, Tsai CF, Shi T, Liu H. Computational ranking-assisted identification of Plexin-B2 in homotypic and heterotypic clustering of circulating tumor cells in breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536233. [PMID: 37090580 PMCID: PMC10120645 DOI: 10.1101/2023.04.10.536233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metastasis is the cause of over 90% of all deaths associated with breast cancer, yet the strategies to predict cancer spreading based on primary tumor profiles and therefore prevent metastasis are egregiously limited. As rare precursor cells to metastasis, circulating tumor cells (CTCs) in multicellular clusters in the blood are 20-50 times more likely to produce viable metastasis than single CTCs. However, the molecular mechanisms underlying various CTC clusters, such as homotypic tumor cell clusters and heterotypic tumor-immune cell clusters, are yet to be fully elucidated. Combining machine learning-assisted computational ranking with experimental demonstration to assess cell adhesion candidates, we identified a transmembrane protein Plexin- B2 (PB2) as a new therapeutic target that drives the formation of both homotypic and heterotypic CTC clusters. High PB2 expression in human primary tumors predicts an unfavorable distant metastasis-free survival and is enriched in CTC clusters compared to single CTCs in advanced breast cancers. Loss of PB2 reduces formation of homotypic tumor cell clusters as well as heterotypic tumor-myeloid cell clusters in triple-negative breast cancer. Interactions between PB2 and its ligand Sema4C on tumor cells promote homotypic cluster formation, and PB2 binding with Sema4A on myeloid cells (monocytes) drives heterotypic CTC cluster formation, suggesting that metastasizing tumor cells hijack the PB2/Sema family axis to promote lung metastasis in breast cancer. Additionally, using a global proteomic analysis, we identified novel downstream effectors of the PB2 pathway associated with cancer stemness, cell cycling, and tumor cell clustering in breast cancer. Thus, PB2 is a novel therapeutic target for preventing new metastasis.
Collapse
|
16
|
From Biology to Diagnosis and Treatment: The Ariadne’s Thread in Cancer of Unknown Primary. Int J Mol Sci 2023; 24:ijms24065588. [PMID: 36982662 PMCID: PMC10053301 DOI: 10.3390/ijms24065588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer of unknown primary (CUP) encloses a group of heterogeneous tumours, the primary sites for which cannot be identified at the time of diagnosis, despite extensive investigations. CUP has always posed major challenges both in its diagnosis and management, leading to the hypothesis that it is rather a distinct entity with specific genetic and phenotypic aberrations, considering the regression or dormancy of the primary tumour; the development of early, uncommon systemic metastases; and the resistance to therapy. Patients with CUP account for 1–3% of all human malignancies and can be categorised into two prognostic subsets according to their clinicopathologic characteristics at presentation. The diagnosis of CUP mainly depends on the standard evaluation comprising a thorough medical history; complete physical examination; histopathologic morphology and algorithmic immunohistochemistry assessment; and CT scan of the chest, abdomen, and pelvis. However, physicians and patients do not fare well with these criteria and often perform additional time-consuming evaluations to identify the primary tumour site to guide treatment decisions. The development of molecularly guided diagnostic strategies has emerged to complement traditional procedures but has been disappointing thus far. In this review, we present the latest data on CUP regarding the biology, molecular profiling, classification, diagnostic workup, and treatment.
Collapse
|
17
|
Brundu S, Napolitano V, Franzolin G, Lo Cascio E, Mastrantonio R, Sardo G, Cascardi E, Verginelli F, Sarnataro S, Gambardella G, Pisacane A, Arcovito A, Boccaccio C, Comoglio PM, Giraudo E, Tamagnone L. Mutated axon guidance gene PLXNB2 sustains growth and invasiveness of stem cells isolated from cancers of unknown primary. EMBO Mol Med 2023; 15:e16104. [PMID: 36722641 PMCID: PMC9994481 DOI: 10.15252/emmm.202216104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
The genetic changes sustaining the development of cancers of unknown primary (CUP) remain elusive. The whole-exome genomic profiling of 14 rigorously selected CUP samples did not reveal specific recurring mutation in known driver genes. However, by comparing the mutational landscape of CUPs with that of most other human tumor types, it emerged a consistent enrichment of changes in genes belonging to the axon guidance KEGG pathway. In particular, G842C mutation of PlexinB2 (PlxnB2) was predicted to be activating. Indeed, knocking down the mutated, but not the wild-type, PlxnB2 in CUP stem cells resulted in the impairment of self-renewal and proliferation in culture, as well as tumorigenic capacity in mice. Conversely, the genetic transfer of G842C-PlxnB2 was sufficient to promote CUP stem cell proliferation and tumorigenesis in mice. Notably, G842C-PlxnB2 expression in CUP cells was associated with basal EGFR phosphorylation, and EGFR blockade impaired the viability of CUP cells reliant on the mutated receptor. Moreover, the mutated PlxnB2 elicited CUP cell invasiveness, blocked by EGFR inhibitor treatment. In sum, we found that a novel activating mutation of the axon guidance gene PLXNB2 sustains proliferative autonomy and confers invasive properties to stem cells isolated from cancers of unknown primary, in EGFR-dependent manner.
Collapse
Affiliation(s)
| | - Virginia Napolitano
- Department of Life Sciences and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
| | | | - Ettore Lo Cascio
- Department of Biotechnological Sciences and Intensive CareUniversità Cattolica del Sacro CuoreRomeItaly
| | - Roberta Mastrantonio
- Department of Life Sciences and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
| | | | - Eliano Cascardi
- Candiolo Cancer InstituteFPO‐IRCCSTurinItaly
- Department of Medical SciencesUniversity of TurinTurinItaly
| | | | | | - Gennaro Gambardella
- Telethon Institute of Genetic and MedicinePozzuoliItaly
- Department of Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly
| | | | - Alessandro Arcovito
- Department of Biotechnological Sciences and Intensive CareUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Gemelli (FPG) – IRCCSRomeItaly
| | - Carla Boccaccio
- Candiolo Cancer InstituteFPO‐IRCCSTurinItaly
- Department of OncologyUniversity of TurinTurinItaly
| | | | - Enrico Giraudo
- Candiolo Cancer InstituteFPO‐IRCCSTurinItaly
- Department of Science and Drug TechnologyUniversity of TurinTurinItaly
| | - Luca Tamagnone
- Department of Life Sciences and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Gemelli (FPG) – IRCCSRomeItaly
| |
Collapse
|
18
|
Meng Z, Li FL, Fang C, Yeoman B, Qiu Y, Wang Y, Cai X, Lin KC, Yang D, Luo M, Fu V, Ma X, Diao Y, Giancotti FG, Ren B, Engler AJ, Guan KL. The Hippo pathway mediates Semaphorin signaling. SCIENCE ADVANCES 2022; 8:eabl9806. [PMID: 35613278 PMCID: PMC9132450 DOI: 10.1126/sciadv.abl9806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Fu-Long Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cao Fang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kimberly C. Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Di Yang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Luo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yarui Diao
- Regeneration Next Initiative, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Filippo G. Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of GU Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Herbert Irving Comprehensive Cancer Center and Department of Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10033, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Yang H, Yuan L, Ibaragi S, Li S, Shapiro R, Vanli N, Goncalves KA, Yu W, Kishikawa H, Jiang Y, Hu AJ, Jay D, Cochran B, Holland EC, Hu GF. Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. Br J Cancer 2022; 127:422-435. [PMID: 35418212 PMCID: PMC9345892 DOI: 10.1038/s41416-022-01814-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiogenin is a multifunctional secreted ribonuclease that is upregulated in human cancers and downregulated or mutationally inactivated in neurodegenerative diseases. A role for angiogenin in glioblastoma was inferred from the inverse correlation of angiogenin expression with patient survival but had not been experimentally investigated. METHODS Angiogenin knockout mice were generated and the effect of angiogenin deficiency on glioblastoma progression was examined. Angiogenin and plexin-B2 genes were knocked down in glioblastoma cells and the changes in cell proliferation, invasion and vascular association were examined. Monoclonal antibodies of angiogenin and small molecules were used to assess the therapeutic activity of the angiogenin-plexin-B2 pathway in both genetic and xenograft animal models. RESULTS Deletion of Ang1 gene prolonged survival of PDGF-induced glioblastoma in mice in the Ink4a/Arf-/-:Pten-/- background, accompanied by decreased invasion, vascular association and proliferation. Angiogenin upregulated MMP9 and CD24 leading to enhanced invasion and vascular association. Inhibition of angiogenin or plexin-B2, either by shRNA, monoclonal antibody or small molecule inhibitor, decreases sphere formation of patient-derived glioma stem cells, reduces glioblastoma proliferation and invasion and inhibits glioblastoma growth in both genetic and xenograft animal models. CONCLUSIONS Angiogenin and its receptor, plexin-B2, are a pair of novel regulators that mediate invasion, vascular association and proliferation of glioblastoma cells. Inhibitors of the angiogenin-plexin-B2 axis have therapeutic potential against glioblastoma.
Collapse
Affiliation(s)
- Hailing Yang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Soichiro Ibaragi
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Shuping Li
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Robert Shapiro
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Nil Vanli
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Wenhao Yu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Hiroko Kishikawa
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Jiang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Alexander J Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Daniel Jay
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Brent Cochran
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Pathology, Harvard Medical School, Boston, MA, USA. .,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
20
|
Abdul Rahman A, Wan Ngah WZ, Jamal R, Makpol S, Harun R, Mokhtar N. Inhibitory Mechanism of Combined Hydroxychavicol With Epigallocatechin-3-Gallate Against Glioma Cancer Cell Lines: A Transcriptomic Analysis. Front Pharmacol 2022; 13:844199. [PMID: 35392560 PMCID: PMC8982671 DOI: 10.3389/fphar.2022.844199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging reports have shown therapeutic potential of hydroxychavicol (HC) and epigallocatechin-3-gallate (EGCG) against cancer cells, however high concentrations are required to achieve the anticancer activity. We reported the synergy of low combination doses of EGCG+HC in glioma cell lines 1321N1, SW1783, and LN18 by assessing the effects of EGCG+HC through functional assays. Using high throughput RNA sequencing, the molecular mechanisms of EGCG+HC against glioma cell lines were revealed. EGCG/HC alone inhibited the proliferation of glioma cell lines, with IC50 values ranging from 82 to 302 µg/ml and 75 to 119 µg/ml, respectively. Sub-effective concentrations of combined EGCG+HC enhanced the suppression of glioma cell growth, with SW1783 showing strong synergism with a combination index (CI) of 0.55 and LN18 showing a CI of 0.51. A moderate synergistic interaction of EGCG+HC was detected in 1321N1 cells, with a CI value of 0.88. Exposure of 1321N1, SW1783, and LN18 cells to EGCG+HC for 24 h induces cell death, with caspase-3 activation rates of 52%, 57%, and 9.4%, respectively. However, the dose for SW1783 is cytotoxic to normal cells, thus this dose was excluded from other tests. EGCG+HC induced cell cycle arrest at S phase and reduced 1321N1 and LN18 cell migration and invasion. Combined EGCG+HC amplified its anticancer effect by downregulating the axon guidance process and metabolic pathways, while simultaneously interfering with endoplasmic reticulum unfolded protein response pathway. Furthermore, EGCG+HC exerted its apoptotic effect through the alteration of mitochondrial genes such as MT-CO3 and MT-RNR2 in 1321N1 and LN18 cells respectively. EGCG+HC dynamically altered DYNLL1 alternative splicing expression in 1321N1 and DLD splicing expression in LN18 cell lines. Our work indicated the pleiotropic effects of EGCG+HC treatment, as well as particular target genes that might be investigated for future glioma cancer therapeutic development.
Collapse
Affiliation(s)
- Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Kampus Sungai Buloh, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia.,Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Roslan Harun
- KPJ Ampang Specialist Hospital, Ampang, Malaysia
| | - Norfilza Mokhtar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion. Nat Commun 2021; 12:6019. [PMID: 34650052 PMCID: PMC8517024 DOI: 10.1038/s41467-021-26296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
During morphogenesis, molecular mechanisms that orchestrate biomechanical dynamics across cells remain unclear. Here, we show a role of guidance receptor Plexin-B2 in organizing actomyosin network and adhesion complexes during multicellular development of human embryonic stem cells and neuroprogenitor cells. Plexin-B2 manipulations affect actomyosin contractility, leading to changes in cell stiffness and cytoskeletal tension, as well as cell-cell and cell-matrix adhesion. We have delineated the functional domains of Plexin-B2, RAP1/2 effectors, and the signaling association with ERK1/2, calcium activation, and YAP mechanosensor, thus providing a mechanistic link between Plexin-B2-mediated cytoskeletal tension and stem cell physiology. Plexin-B2-deficient stem cells exhibit premature lineage commitment, and a balanced level of Plexin-B2 activity is critical for maintaining cytoarchitectural integrity of the developing neuroepithelium, as modeled in cerebral organoids. Our studies thus establish a significant function of Plexin-B2 in orchestrating cytoskeletal tension and cell-cell/cell-matrix adhesion, therefore solidifying the importance of collective cell mechanics in governing stem cell physiology and tissue morphogenesis.
Collapse
|
22
|
Ngo MT, Harley BAC. Progress in mimicking brain microenvironments to understand and treat neurological disorders. APL Bioeng 2021; 5:020902. [PMID: 33869984 PMCID: PMC8034983 DOI: 10.1063/5.0043338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders including traumatic brain injury, stroke, primary and metastatic brain tumors, and neurodegenerative diseases affect millions of people worldwide. Disease progression is accompanied by changes in the brain microenvironment, but how these shifts in biochemical, biophysical, and cellular properties contribute to repair outcomes or continued degeneration is largely unknown. Tissue engineering approaches can be used to develop in vitro models to understand how the brain microenvironment contributes to pathophysiological processes linked to neurological disorders and may also offer constructs that promote healing and regeneration in vivo. In this Perspective, we summarize features of the brain microenvironment in normal and pathophysiological states and highlight strategies to mimic this environment to model disease, investigate neural stem cell biology, and promote regenerative healing. We discuss current limitations and resulting opportunities to develop tissue engineering tools that more faithfully recapitulate the aspects of the brain microenvironment for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Mai T. Ngo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Brendan A. C. Harley
- Author to whom correspondence should be addressed:. Tel.: (217) 244-7112. Fax: (217) 333-5052
| |
Collapse
|