1
|
Čadež T, Maček Hrvat N, Šinko G, Kalisiak J, Radić Z, Fokin VV, Sharpless KB, Taylor P, Kovarik Z. Click-chemistry-derived oxime library reveals efficient reactivators of nerve agent-inhibited butyrylcholinesterase suitable for pseudo-catalytic bioscavenging. Arch Toxicol 2025; 99:2107-2131. [PMID: 40032685 DOI: 10.1007/s00204-025-03985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
A library of 100 click-chemistry-derived oximes was evaluated as reactivators of butyrylcholinesterase (BChE) inhibited by the nerve agents (NAs) sarin, cyclosarin, VX, and tabun. While reactivation efficiency was highly dependent on the structure of both the NA and the oxime, for each NA-BChE conjugate, we identified reactivators more effective than currently approved oximes for NA poisoning. Detailed kinetic analysis indicated that this enhancement results from both improved molecular recognition-specifically, enhanced binding affinity of the phosphylated conjugates for the oximes-and increased maximal reactivation rates. Molecular modeling of oximes in a near-attack conformation within inhibited BChE revealed critical interactions for productive reactivation. Among all tested oximes, 5B [1-hexyl-2-((hydroxyimino)methyl)pyridinium chloride] emerged as a particularly efficient reactivator for BChE phosphorylated with cyclosarin, with the highest observed overall reactivation rate of 34,120 M-1 min-1, which is 525-fold and 44-fold higher than the reference oximes 2-PAM and HI-6, respectively. In general, three mono-pyridinium mono-oximes demonstrated more efficient recovery of BChE activity than bis-pyridinium triazole-annulated click-chemistry bis-oximes, which were previously identified as potent reactivators for inhibited acetylcholinesterase (AChE). Ex vivo assessment of reactivation potency demonstrated that the combined addition of BChE with one efficient reactivator for BChE and another for AChE achieved > 90% reactivation of cyclosarin-inhibited cholinesterases in whole blood (WB), demonstrating near-complete degradation of a 100-fold excess of cyclosarin within 6 min. These results confirm that oxime-assisted catalysis is feasible for NA bioscavenging in blood and underscore BChE's potential as a target for developing therapies against NA poisoning.
Collapse
Affiliation(s)
- Tena Čadež
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Goran Šinko
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Valery V Fokin
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Bridge@USC and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, USA
| | - Karl Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
- Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Kohoutova Z, Prchalova E, Knittelova K, Musilek K, Malinak D. Reactivators of butyrylcholinesterase inhibited by organophosphorus compounds. Bioorg Chem 2024; 150:107526. [PMID: 38878749 DOI: 10.1016/j.bioorg.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 07/21/2024]
Abstract
In this review, the current progress in the research and development of butyrylcholinesterase (BChE) reactivators is summarised and the advantages or disadvantages of these reactivators are critically discussed. Organophosphorus compounds such as nerve agents (sarin, tabun, VX) or pesticides (chlorpyrifos, diazinon) cause irreversible inhibition of acetylcholinesterase (AChE) and BChE in the human body. While AChE inhibition can be life threatening due to cholinergic overstimulation and crisis, selective BChE inhibition has presumably no adverse effects. Because BChE is mostly found in plasma, its activity is important for the scavenging of organophosphates before they can reach AChE in the central nervous system. Therefore, this enzyme in combination with its reactivator can be used as a pseudo-catalytic scavenger of organophosphates. Three structural types of BChE reactivators were found, i.e. bisquaternary salts, monoquaternary salts and uncharged compounds. Although the reviewed reactivators have certain limitations, the promising candidates for BChE reactivation were found in each structural group.
Collapse
Affiliation(s)
- Zuzana Kohoutova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eliska Prchalova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - David Malinak
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Wang J, Jin M, Wang Q, Lu X, Gao R, Sun F, Pei C, Wang H. Study on phosphonylation and modification characteristics of organophosphorus nerve agents on multi-species and multi-source albumins. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124155. [PMID: 38735125 DOI: 10.1016/j.jchromb.2024.124155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Protein adducts are vital targets for exploring organophosphorus nerve agents (OPNAs) exposure and identification, that can be used to characterize the chemical burden and initiate chemical safety measures. However, the use of protein adducts as biomarkers of OPNA exposure has developed slowly. To further promote the development of biomarkers in chemical forensics, it is crucial to expand the range of modified peptides and active sites, and describe the characteristics of OPNA adducts at specific reaction sites. This study utilized multi-species and multi-source albumins as the protein targets. We identified 56 peptides in albumins from various species (including human, horse, rat and pig), that were modified by at least two OPNAs. Diverse modification characteristics were observed in response to certain agents: including (1) multiple sites on the same peptide modified by one or more agents, (2) different reactivities at the same site in homologous albumins, and (3) different preferences at the same active sites associated with differences in the biological matrix during exposure. Our studies provided an empirical reference with rationalized underpinnings supported by estimated conformation energetics through molecular modeling. We employed different peptide markers for detection of protein adducts, as (one would do) in forensic screening for identification and quantification of chemical damage. Three characteristic peptides were screened and analyzed in human albumin, including Y287ICENQDSISSK, K438VPQVS443TPTLVEVSR, and Y162LY164EIAR. Stable fragment ions with neutral loss were found from their tandem MS/MS spectra, which were used as characteristic ions for identification and extraction of modified peptides in enzymatic digestion mixtures. Coupling these observations with computer simulations, we found that the structural stability of albumin and albumin-adduct complexes (as well as the effective force that promotes stability of different adducts) changes in the interval before and after adduct formation. In pig albumin, five active peptides existed stably in vivo and in vitro. Most of them can be detected within 30 min after OPNA exposure, and the detection window can persist about half a month. These early findings provided the foundation and rationale for utilizing pig albumin as a sampling target for rapid analysis in future forensic work.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Meng Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; School of Chemistry and Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050000, China
| | - Qian Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; School of Chemistry and Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050000, China
| | - Xiaogang Lu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Runli Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fengxia Sun
- School of Chemistry and Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050000, China
| | - Chengxin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
4
|
Gorecki L, Markova A, Hepnarova V, Zivna N, Junova L, Hrabinova M, Janousek J, Kobrlova T, Prchal L, Jun D, Soukup O, Horn G, Worek F, Marek J, Korabecny J. Uncharged mono- and bisoximes: In search of a zwitterion to countermeasure organophosphorus intoxication. Chem Biol Interact 2024; 394:110941. [PMID: 38493910 DOI: 10.1016/j.cbi.2024.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.
Collapse
Affiliation(s)
- Lukas Gorecki
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Aneta Markova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Hospital Pharmacy, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Natalie Zivna
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Junova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Janousek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Jan Marek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Epidemiology, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Xiao F, Lei D, Liu C, Li Y, Ren W, Li J, Li D, Zu B, Dou X. Coherent Modulation of the Aggregation Behavior and Intramolecular Charge Transfer in Small Molecule Probes for Sensitive and Long-term Nerve Agent Monitoring. Angew Chem Int Ed Engl 2024; 63:e202400453. [PMID: 38323751 DOI: 10.1002/anie.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Aggregation-induced emission (AIE) shows promising performance in chemical sensing relying on the change of the emission behavior of the probe molecule monomers to the aggregated product. However, whether the response contrast could be further boosted by utilizing the emission property of the aggregated probe and the aggregated product remains a big challenge. Here, an exciting AIE probe regulation strategy was proposed by coherently modulating the aggregation behavior and the intramolecular charge transfer (ICT) property of the probes and thus an aggregated-to-aggregated colorimetric-fluorescent dual-mode detection was achieved. The blue emissive film obtained with the optimal AIE probe has been proven to be effective to recognize the vapor of nerve agent analog DCP in air by emitting a sharp green fluorescence. In addition, a porous polymer-based wet sensing chip loaded with the probe enables the immediate response to DCP vapor with a limit of detection (LOD) of 1.7 ppb, and it was further integrated into a wearable watch device for long-term monitoring of DCP vapor up to two weeks. We expect the present probe design strategy would greatly deepen the AIE-based science and provide new insights for long-term monitoring sensors toward trace hazardous substances.
Collapse
Affiliation(s)
- Fangfang Xiao
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Chaogan Liu
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Yushu Li
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Wenfei Ren
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Dezhong Li
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Dirak M, Chan J, Kolemen S. Optical imaging probes for selective detection of butyrylcholinesterase. J Mater Chem B 2024; 12:1149-1167. [PMID: 38196348 DOI: 10.1039/d3tb02468g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Butyrylcholinesterase (BChE), a member of the human serine hydrolase family, is an essential enzyme for cholinergic neurotransmission as it catalyzes the hydrolysis of acetylcholine. It also plays central roles in apoptosis, lipid metabolism, and xenobiotic detoxification. On the other side, abnormal levels of BChE are directly associated with the formation of pathogenic states such as neurodegenerative diseases, psychiatric and cardiovascular disorders, liver damage, diabetes, and cancer. Thus, selective and sensitive detection of BChE level in living organisms is highly crucial and is of great importance to further understand the roles of BChE in both physiological and pathological processes. However, it is a very complicated task due to the potential interference of acetylcholinesterase (AChE), the other human cholinesterase, as these two enzymes share a very similar substrate scope. To this end, optical imaging probes have attracted immense attention in recent years as they have modular structures, which can be tuned precisely to satisfy high selectivity toward BChE, and at the same time they offer real time and nondestructive imaging opportunities with a high spatial and temporal resolution. Here, we summarize BChE selective imaging probes by discussing the critical milestones achieved during the development process of these molecular sensors over the years. We put a special emphasis on design principles and biological applications of highly promising new generation activity-based probes. We also give a comprehensive outlook for the future of BChE-responsive probes and highlight the ongoing challenges. This collection marks the first review article on BChE-responsive imaging agents.
Collapse
Affiliation(s)
- Musa Dirak
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| |
Collapse
|
7
|
Kaur S, Chowdhary S, Kumar D, Bhattacharyya R, Banerjee D. Organophosphorus and carbamate pesticides: Molecular toxicology and laboratory testing. Clin Chim Acta 2023; 551:117584. [PMID: 37805177 DOI: 10.1016/j.cca.2023.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Population and food requirements are increasing daily throughout the world. To fulfil these requirements application of pesticides is also increasing. Organophosphorous (OP) and Organocarbamate (OC) compounds are widely used pesticides. These pesticides are used for suicidal purposes too. Both inhibit Acetylcholinesterase (AChE) and cholinergic symptoms are mainly used for the diagnosis of pesticide poisoning. Although the symptoms of the intoxication of OP and OC are similar, recent research has described different targets for OP and OC pesticides. Researchers believe the distinction of OP/OC poisoning will be beneficial for the management of pesticide exposure. OP compounds produce adducts with several proteins. There is a new generation of OP compounds like glyphosate that do not inhibit AChE. Therefore, it's high time to develop biomarkers that can distinguish OP poisoning from OC poisoning.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Sheemona Chowdhary
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Deepak Kumar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
8
|
N-substituted arylhydroxamic acids as acetylcholinesterase reactivators. Chem Biol Interact 2022; 365:110078. [DOI: 10.1016/j.cbi.2022.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
|
9
|
Retrospective detection for V-type OPNAs exposure via phosphonylation and disulfide adducts in albumin. Sci Rep 2022; 12:10979. [PMID: 35768567 PMCID: PMC9243071 DOI: 10.1038/s41598-022-15198-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Organophosphorus nerve agents (OPNAs) that damage the central nervous system by inhibiting acetylcholinesterase activity, pose severe threats to human health and life security. Reliable biomarkers that quickly and accurately detect OPNAs exposure are urgently needed to help diagnose quickly and treat in time. Albumins that covalently bind to OPNAs could serve as important targets for retrospective verification of OPNAs exposure. The goal of this study is to explore the potential biomarkers in albumins with high reactivity and good stability and expand the group of potential biomarkers in different species for detecting the exposure of V-type OPNAs including O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX), O-isobutyl S-(2(diethylamino)ethyl) methylphosphonothioate (VR), and O-butyl S-(2-(diethylamino)ethyl) methylphosphonothioate (Vs). Taking human serum albumin (HSA), bovine serum albumin (BSA) and rabbit serum albumin (RSA) as the research objectives, multiple active sites including phosphonylation and disulfide adduct sites were observed in albumins from different species. Numerous phosphonylation sites labeled by all agents in one type of albumin were found. Among the different species, four shared phosphonylation sites with high reactivity include K499, K549, K249, and Y108. In addition, Y108 on ETY*GEMADCCAK, Y287 on Y*ICENQDSISSK, Y377 on TY*ETTLEK and Y164 on YLY*EIAR in HSA were stably phosphonylated by all agents in gradient concentration, making them stable and suitable potential biomarkers for V-type OPNAs exposure. Notably, Y108 on ETY*GEMADCCAK in HSA, on DTY*GDVADCCEK in RSA, and on ETY*GDMADCCEK in BSA were highly reactive to all V-type agents, regardless of species. It was also successfully labeled in HSA exposed to class V agents in gradient concentration. Y108 is expected to be used to screen and identify the exposure of V-type agents in the retrospective research. Disulfide adducts sites, consisted of four sites in HSA and two sites in BSA were also successfully labeled by V-type agents, and characteristic ion fragments from these disulfide adducts were also identified by secondary mass spectrometry. Molecular simulation of the stably modified sites were conducted to discover the promoting factors of covalent adduct formation, which help further clarify formation mechanism of albumin adducts at active sites.
Collapse
|
10
|
Kalász H, Tekes K, Bátor G, Adeghate J, Adeghate E, Darvas F, Fűrész J, Karvaly G. Investigation of the Experimental Pharmacokinetics of the Bis-Chlorinated Bis-pyridinium Mono-aldoxime Cholinesterase Reactivator K-868 in Rats. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2021. [DOI: 10.2174/1874104502015010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The widespread use of organophosphorus compounds in agriculture and their existence in some military arsenals present continuous threats. Quaternary bis-pyridinium aldoximes are potent, highly polar cholinesterase reactivators and the most intensively studied candidate antidotes against poisoning with organophosphorus compounds.
Objective:
The in vivo experimental pharmacokinetic properties of K-868, a novel bis-chlorinated, bis-pyridinium mono-aldoxime are detailed and put in context with regard to similar compounds described earlier.
Methods:
Rats received 30 µmol K-868 i.m. and were sacrificed at various time points following treatment. Blood, cerebrospinal fluid and tear were collected, while the brains, eyes, kidneys, livers, lungs and testes were removed, dissected and homogenized. K-868 concentrations were determined using high performance liquid chromatography with ultraviolet absorption detection.
Results:
K-868 was detected in the eyes, kidneys, lungs and tear within 5 minutes in maximal serum concentrations attained 15 minutes following administration. Elimination was slow for K-868 which remained detectable at 120 minutes in the blood and the kidneys, and at 60 minutes in the eyes, lungs and tear following its administration. Nevertheless, its distribution was overall poor with areas under the 120-minute concentration curves (AUC120) showing close similarity in the blood and the kidneys, while reaching just approximately 5% of serum AUC120 in the eyes and lungs.
Conclusion:
K-868 is a potent candidate antidote against organophosphate poisoining with a prolonged presence in the circulation.
Collapse
|