1
|
Fang J, Singh S, Wells B, Wu Q, Jin H, Janke LJ, Wan S, Steele JA, Connelly JP, Murphy AJ, Wang R, Davidoff A, Ashcroft M, Pruett-Miller SM, Yang J. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. eLife 2025; 14:RP101299. [PMID: 40326560 PMCID: PMC12055005 DOI: 10.7554/elife.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
3D cellular-specific epigenetic and transcriptomic reprogramming is critical to organogenesis and tumorigenesis. Here, we dissect the distinct cell fitness in 2D (normoxia vs. chronic hypoxia) vs 3D (normoxia) culture conditions for an MYC-driven murine liver cancer model. We identify over 600 shared essential genes and additional context-specific fitness genes and pathways. Knockout of the VHL-HIF1 pathway results in incompatible fitness defects under normoxia vs. 1% oxygen or 3D culture conditions. Moreover, deletion of each of the mitochondrial respiratory electron transport chain complex has distinct fitness outcomes. Notably, multicellular organogenesis signaling pathways including TGFβ-SMAD, which is upregulated in 3D culture, specifically constrict the uncontrolled cell proliferation in 3D while inactivation of epigenetic modifiers (Bcor, Kmt2d, Mettl3, and Mettl14) has opposite outcomes in 2D vs. 3D. We further identify a 3D-dependent synthetic lethality with partial loss of Prmt5 due to a reduction of Mtap expression resulting from 3D-specific epigenetic reprogramming. Our study highlights unique epigenetic, metabolic, and organogenesis signaling dependencies under different cellular settings.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Shivendra Singh
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Brennan Wells
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Qiong Wu
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Hongjian Jin
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Laura J Janke
- Department of Pathology and Division of Comparative Pathology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Shibiao Wan
- Bioinformatics and Systems Biology Core and Department of Genetics, Cell Biology and Anatomy University of Nebraska Medical CenterOmahaUnited States
| | - Jacob A Steele
- Department of Cell and Molecular Biology, Center for Advanced Genome Engineering, St. Jude Children's Research HospitalMemphisUnited States
| | - Jon P Connelly
- Department of Cell and Molecular Biology, Center for Advanced Genome Engineering, St. Jude Children's Research HospitalMemphisUnited States
| | - Andrew J Murphy
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics at The Ohio State UniversityColumbusUnited States
| | - Andrew Davidoff
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
| | - Margaret Ashcroft
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, Center for Advanced Genome Engineering, St. Jude Children's Research HospitalMemphisUnited States
| | - Jun Yang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
- College of Graduate Health Sciences, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
2
|
Zamora-Dorta M, Laine-Menéndez S, Abia D, González-García P, López LC, Fernández-Montes P, Calvo E, Vázquez J, Enríquez JA, Balsa E. Time-resolved mitochondrial screen identifies regulatory components of oxidative metabolism. EMBO Rep 2025:10.1038/s44319-025-00459-9. [PMID: 40301572 DOI: 10.1038/s44319-025-00459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
Defects in mitochondrial oxidative metabolism underlie many genetic disorders with limited treatment options. The incomplete annotation of mitochondrial proteins highlights the need for a comprehensive gene inventory, particularly for Oxidative Phosphorylation (OXPHOS). To address this, we developed a CRISPR/Cas9 loss-of-function library targeting nuclear-encoded mitochondrial genes and conducted galactose-based screenings to identify novel regulators of mitochondrial function. Our study generates a gene catalog essential for mitochondrial metabolism and maps a dynamic network of mitochondrial pathways, focusing on OXPHOS complexes. Computational analysis identifies RTN4IP1 and ECHS1 as key OXPHOS genes linked to mitochondrial diseases in humans. RTN4IP1 is found to be crucial for mitochondrial respiration, with complexome profiling revealing its role as an assembly factor required for the complete assembly of complex I. Furthermore, we discovered that ECHS1 controls oxidative metabolism independently of its canonical function in fatty acid oxidation. Its deletion impairs branched-chain amino acids (BCAA) catabolism, disrupting lipoic acid-dependent enzymes such as pyruvate dehydrogenase (PDH). This deleterious phenotype can be rescued by restricting valine intake or catabolism in ECHS1-deficient cells.
Collapse
Affiliation(s)
- Marcos Zamora-Dorta
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Sara Laine-Menéndez
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - David Abia
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Pilar González-García
- Instituto de Investigación Biosanitaria Ibs, 18016, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | - Luis C López
- Instituto de Investigación Biosanitaria Ibs, 18016, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), 18016, Granada, Spain
| | - Paula Fernández-Montes
- Laboratory of Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Enrique Calvo
- Laboratory of Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - José Antonio Enríquez
- Laboratory of Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eduardo Balsa
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain.
- Instituto Universitario de Biología Molecular - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
3
|
Yang J, Fang J, Singh S, Wells B, Wu Q, Jin H, Janke L, Wan S, Steele J, Connelly J, Murphy A, Wang R, Davidoff A, Ashcroft M, Pruett-Miller S. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. RESEARCH SQUARE 2025:rs.3.rs-4390765. [PMID: 38853928 PMCID: PMC11160912 DOI: 10.21203/rs.3.rs-4390765/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
3D cellular-specific epigenetic and transcriptomic reprogramming is critical to organogenesis and tumorigenesis. Here we dissect the distinct cell fitness in 2D (normoxia vs. chronic hypoxia) vs 3D (normoxia) culture conditions for a MYC-driven murine liver cancer model. We identify over 600 shared essential genes and additional context-specific fitness genes and pathways. Knockout of the VHL-HIF1 pathway results in incompatible fitness defects under normoxia vs. 1% oxygen or 3D culture conditions. Moreover, deletion of each of the mitochondrial respiratory electron transport chain complex has distinct fitness outcomes. Notably, multicellular organogenesis signaling pathways including TGFb-SMAD, which is upregulated in 3D culture, specifically constrict the uncontrolled cell proliferation in 3D while inactivation of epigenetic modifiers (Bcor, Kmt2d, METTL3 and METTL14) has opposite outcomes in 2D vs. 3D. We further identify a 3D-dependent synthetic lethality with partial loss of Prmt5 due to a reduction of Mtap expression resulting from 3D-specific epigenetic reprogramming. Our study highlights unique epigenetic, metabolic and organogenesis signaling dependencies under different cellular settings.
Collapse
Affiliation(s)
- Jun Yang
- St. Jude Children's Research Hospital
| | - Jie Fang
- St. Jude Children's Research Hospital
| | | | | | - Qiong Wu
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | - Ruoning Wang
- Abigail Wexner Research Institute at Nationwide Children's Hospital
| | | | | | | |
Collapse
|
4
|
Thomas LW, Stephen JM, Ashcroft M. CHCHD4 regulates the expression of mitochondrial genes that are essential for tumour cell growth. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167282. [PMID: 38909850 DOI: 10.1016/j.bbadis.2024.167282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
CHCHD4 (MIA40) is central to the functions of the mitochondrial disulfide relay system (DRS). CHCHD4 is essential and evolutionarily conserved. Previously, we have shown CHCHD4 to be a critical regulator of tumour cell growth. Here, we use integrated analysis of our genome-wide CRISPR/Cas9 and SILAC proteomic screening data to delineate mechanisms of CHCHD4 essentiality in cancer. We identify a shortlist of common essential genes/proteins regulated by CHCHD4, including subunits of complex I that are known DRS substrates, and genes/proteins involved in key metabolic pathways. Our study highlights a range of CHCHD4-regulated nuclear encoded mitochondrial genes/proteins essential for tumour cell growth.
Collapse
Affiliation(s)
- Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
| | - Jenna M Stephen
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
5
|
Zhu Y, Pei X, Novaj A, Setton J, Bronder D, Derakhshan F, Selenica P, McDermott N, Orman M, Plum S, Subramanyan S, Braverman SH, McMillan B, Sinha S, Ma J, Gazzo A, Khan A, Bakhoum S, Powell SN, Reis-Filho JS, Riaz N. Large-scale copy number alterations are enriched for synthetic viability in BRCA1/BRCA2 tumors. Genome Med 2024; 16:108. [PMID: 39198848 PMCID: PMC11351199 DOI: 10.1186/s13073-024-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pathogenic BRCA1 or BRCA2 germline mutations contribute to hereditary breast, ovarian, prostate, and pancreatic cancer. Paradoxically, bi-allelic inactivation of BRCA1 or BRCA2 (bBRCA1/2) is embryonically lethal and decreases cellular proliferation. The compensatory mechanisms that facilitate oncogenesis in bBRCA1/2 tumors remain unclear. METHODS We identified recurrent genetic alterations enriched in human bBRCA1/2 tumors and experimentally validated if these improved proliferation in cellular models. We analyzed mutations and copy number alterations (CNAs) in bBRCA1/2 breast and ovarian cancer from the TCGA and ICGC. We used Fisher's exact test to identify CNAs enriched in bBRCA1/2 tumors compared to control tumors that lacked evidence of homologous recombination deficiency. Genes located in CNA regions enriched in bBRCA1/2 tumors were further screened by gene expression and their effects on proliferation in genome-wide CRISPR/Cas9 screens. A set of candidate genes was functionally validated with in vitro clonogenic survival and functional assays to validate their influence on proliferation in the setting of bBRCA1/2 mutations. RESULTS We found that bBRCA1/2 tumors harbor recurrent large-scale genomic deletions significantly more frequently than histologically matched controls (n = 238 cytobands in breast and ovarian cancers). Within the deleted regions, we identified 277 BRCA1-related genes and 218 BRCA2-related genes that had reduced expression and increased proliferation in bBRCA1/2 but not in wild-type cells in genome-wide CRISPR screens. In vitro validation of 20 candidate genes with clonogenic proliferation assays validated 9 genes, including RIC8A and ATMIN (ATM-Interacting protein). We identified loss of RIC8A, which occurs frequently in both bBRCA1/2 tumors and is synthetically viable with loss of both BRCA1 and BRCA2. Furthermore, we found that metastatic homologous recombination deficient cancers acquire loss-of-function mutations in RIC8A. Lastly, we identified that RIC8A does not rescue homologous recombination deficiency but may influence mitosis in bBRCA1/2 tumors, potentially leading to increased micronuclei formation. CONCLUSIONS This study provides a means to solve the tumor suppressor paradox by identifying synthetic viability interactions and causal driver genes affected by large-scale CNAs in human cancers.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ardijana Novaj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Bronder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niamh McDermott
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mehmet Orman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarina Plum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shyamal Subramanyan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara H Braverman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Biko McMillan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonali Sinha
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Ma
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Atif Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
An Y, Talwar CS, Park KH, Ahn WC, Lee SJ, Go SR, Cho JH, Kim DY, Kim YS, Cho S, Kim JH, Kim TJ, Woo EJ. Design of hypoxia responsive CRISPR-Cas9 for target gene regulation. Sci Rep 2023; 13:16763. [PMID: 37798384 PMCID: PMC10556097 DOI: 10.1038/s41598-023-43711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
The CRISPR-Cas9 system is a widely used gene-editing tool, offering unprecedented opportunities for treating various diseases. Controlling Cas9/dCas9 activity at specific location and time to avoid undesirable effects is very important. Here, we report a conditionally active CRISPR-Cas9 system that regulates target gene expression upon sensing cellular environmental change. We conjugated the oxygen-sensing transcription activation domain (TAD) of hypoxia-inducing factor (HIF-1α) with the Cas9/dCas9 protein. The Cas9-TAD conjugate significantly increased endogenous target gene cleavage under hypoxic conditions compared with that under normoxic conditions, whereas the dCas9-TAD conjugate upregulated endogenous gene transcription. Furthermore, the conjugate system effectively downregulated the expression of SNAIL, an essential gene in cancer metastasis, and upregulated the expression of the tumour-related genes HNF4 and NEUROD1 under hypoxic conditions. Since hypoxia is closely associated with cancer, the hypoxia-dependent Cas9/dCas9 system is a novel addition to the molecular tool kit that functions in response to cellular signals and has potential application for gene therapeutics.
Collapse
Affiliation(s)
- Yan An
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chandana S Talwar
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Kwang-Hyun Park
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Woo-Chan Ahn
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Su-Jin Lee
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Seong-Ryeong Go
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Jin Hwa Cho
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Do Yon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Yong-Sam Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong-Hoon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Tae-Jip Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Eui-Jeon Woo
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
7
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
8
|
Moreno A, Taffet A, Tjahjono E, Anderson QL, Kirienko NV. Examining Sporadic Cancer Mutations Uncovers a Set of Genes Involved in Mitochondrial Maintenance. Genes (Basel) 2023; 14:1009. [PMID: 37239369 PMCID: PMC10218105 DOI: 10.3390/genes14051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are key organelles for cellular health and metabolism and the activation of programmed cell death processes. Although pathways for regulating and re-establishing mitochondrial homeostasis have been identified over the past twenty years, the consequences of disrupting genes that regulate other cellular processes, such as division and proliferation, on affecting mitochondrial function remain unclear. In this study, we leveraged insights about increased sensitivity to mitochondrial damage in certain cancers, or genes that are frequently mutated in multiple cancer types, to compile a list of candidates for study. RNAi was used to disrupt orthologous genes in the model organism Caenorhabditis elegans, and a series of assays were used to evaluate these genes' importance for mitochondrial health. Iterative screening of ~1000 genes yielded a set of 139 genes predicted to play roles in mitochondrial maintenance or function. Bioinformatic analyses indicated that these genes are statistically interrelated. Functional validation of a sample of genes from this set indicated that disruption of each gene caused at least one phenotype consistent with mitochondrial dysfunction, including increased fragmentation of the mitochondrial network, abnormal steady-state levels of NADH or ROS, or altered oxygen consumption. Interestingly, RNAi-mediated knockdown of these genes often also exacerbated α-synuclein aggregation in a C. elegans model of Parkinson's disease. Additionally, human orthologs of the gene set showed enrichment for roles in human disorders. This gene set provides a foundation for identifying new mechanisms that support mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Natalia V. Kirienko
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX 77005, USA; (A.M.); (A.T.); (E.T.); (Q.L.A.)
| |
Collapse
|
9
|
Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M, Fiore A. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther 2023; 8:137. [PMID: 36949046 PMCID: PMC10033890 DOI: 10.1038/s41392-023-01380-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Federica Danzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria T Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Nadendla K, Simpson GG, Becher J, Journeaux T, Cabeza-Cabrerizo M, Bernardes GJL. Strategies for Conditional Regulation of Proteins. JACS AU 2023; 3:344-357. [PMID: 36873677 PMCID: PMC9975842 DOI: 10.1021/jacsau.2c00654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Design of the next-generation of therapeutics, biosensors, and molecular tools for basic research requires that we bring protein activity under control. Each protein has unique properties, and therefore, it is critical to tailor the current techniques to develop new regulatory methods and regulate new proteins of interest (POIs). This perspective gives an overview of the widely used stimuli and synthetic and natural methods for conditional regulation of proteins.
Collapse
Affiliation(s)
- Karthik Nadendla
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Grant G. Simpson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Julie Becher
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Toby Journeaux
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Mar Cabeza-Cabrerizo
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Stoolman JS, Porcelli AM, Martínez-Reyes I. Editorial: Mitochondria as a hub in cellular signaling. Front Cell Dev Biol 2022; 10:981464. [PMID: 36046344 PMCID: PMC9421365 DOI: 10.3389/fcell.2022.981464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joshua S. Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Inmaculada Martínez-Reyes
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- *Correspondence: Inmaculada Martínez-Reyes,
| |
Collapse
|
12
|
Wen Y, Huang H, Huang B, Liao X. HSA-miR-34a-5p regulates the SIRT1/TP53 axis in prostate cancer. Am J Transl Res 2022; 14:4493-4504. [PMID: 35958506 PMCID: PMC9360830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
SIRT1 is tightly associated with the progression of prostate cancer while the role of Hsa-miR-34a-5p in SIRT1-mediated prostate cancer is not fully understood. We have thoroughly mined the data from two databases, namely the Lipidemia and the cancer genome atlas (TCGA) and found that SIRT1 was highly expressed in human carcinoma tissues as compared to normal tissues, and patients with high SIRT1 expression level had a shorter survival time. The online tool "Gene-RADAR" was applied to investigate the interaction among SIRT1, the TP53 gene and miR-34a-5p. We found that SIRT1 was up-regulated in cancer tissues from patients diagnosed with prostate and castration-resistant prostate cancer when compared to healthy controls. Pearson analysis indicated a positive correlation between SIRT1 and miR-34a-5p, while data mining on the TargetScan database predicted the binding site between the two. An apoptosis assay of prostate cancer cells (PRAD) confirmed that the overexpression of miR-34a-5p inhibited paclitaxel-induced apoptosis and promoted cell proliferation. Cell cycle analysis verified that miR-34a-5p overexpression blocked PRAD cells in the G2/S phase of the cell cycle. Moreover, the Western blotting (WB) and quantitative PCR (qPCR) assays demonstrated that the overexpression of miR-34a-5p induced down-regulation of the SIRT-related proteins HIF2α and PGC1α, while on the contrary, it up-regulated the expression of two tumour suppressor genes, TP53 and VEGF. In conclusion, we have shown that miR-34a-5p is involved in the oncogenesis of PRAD cells via the SIRT1/TP53 axis.
Collapse
Affiliation(s)
- Yongqin Wen
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Huijie Huang
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Bo Huang
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Xiaomin Liao
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| |
Collapse
|
13
|
Sela Y, Li J, Maheswaran S, Norgard R, Yuan S, Hubbi M, Doepner M, Xu JP, Ho E, Measaros C, Sheehan C, Croley G, Muir A, Blair IA, Shalem O, Dang CV, Stanger BZ. Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. Cancer Res 2022; 82:1890-1908. [PMID: 35315913 PMCID: PMC9117449 DOI: 10.1158/0008-5472.can-22-0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
Solid tumors possess heterogeneous metabolic microenvironments where oxygen and nutrient availability are plentiful (fertile regions) or scarce (arid regions). While cancer cells residing in fertile regions proliferate rapidly, most cancer cells in vivo reside in arid regions and exhibit a slow-cycling state that renders them chemoresistant. Here, we developed an in vitro system enabling systematic comparison between these populations via transcriptome analysis, metabolomic profiling, and whole-genome CRISPR screening. Metabolic deprivation led to pronounced transcriptional and metabolic reprogramming, resulting in decreased anabolic activities and distinct vulnerabilities. Reductions in anabolic, energy-consuming activities, particularly cell proliferation, were not simply byproducts of the metabolic challenge, but rather essential adaptations. Mechanistically, Bcl-xL played a central role in the adaptation to nutrient and oxygen deprivation. In this setting, Bcl-xL protected quiescent cells from the lethal effects of cell-cycle entry in the absence of adequate nutrients. Moreover, inhibition of Bcl-xL combined with traditional chemotherapy had a synergistic antitumor effect that targeted cycling cells. Bcl-xL expression was strongly associated with poor patient survival despite being confined to the slow-cycling fraction of human pancreatic cancer cells. These findings provide a rationale for combining traditional cancer therapies that target rapidly cycling cells with those that target quiescent, chemoresistant cells associated with nutrient and oxygen deprivation. SIGNIFICANCE The majority of pancreatic cancer cells inhabit nutrient- and oxygen-poor tumor regions and require Bcl-xL for their survival, providing a compelling antitumor metabolic strategy.
Collapse
Affiliation(s)
- Yogev Sela
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jinyang Li
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Shivahamy Maheswaran
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Robert Norgard
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Salina Yuan
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Maimon Hubbi
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Miriam Doepner
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jimmy P. Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Elaine Ho
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Clementina Measaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Grace Croley
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ian A. Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Systems and Computational Biology Center and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, 19104, USA
- Ludwig Institute for Cancer Research, New York, 10016, USA
| | - Ben Z. Stanger
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
14
|
Batie M, Kenneth NS, Rocha S. Systems approaches to understand oxygen sensing: how multi-omics has driven advances in understanding oxygen-based signalling. Biochem J 2022; 479:245-257. [PMID: 35119457 PMCID: PMC8883490 DOI: 10.1042/bcj20210554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Hypoxia is a common denominator in the pathophysiology of a variety of human disease states. Insight into how cells detect, and respond to low oxygen is crucial to understanding the role of hypoxia in disease. Central to the hypoxic response is rapid changes in the expression of genes essential to carry out a wide range of functions to adapt the cell/tissue to decreased oxygen availability. These changes in gene expression are co-ordinated by specialised transcription factors, changes to chromatin architecture and intricate balances between protein synthesis and destruction that together establish changes to the cellular proteome. In this article, we will discuss the advances of our understanding of the cellular oxygen sensing machinery achieved through the application of 'omics-based experimental approaches.
Collapse
Affiliation(s)
- Michael Batie
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Niall S. Kenneth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Sonia Rocha
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| |
Collapse
|
15
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
16
|
Thomas LW, Ashcroft M. The Contextual Essentiality of Mitochondrial Genes in Cancer. Front Cell Dev Biol 2021; 9:695351. [PMID: 34746119 PMCID: PMC8569703 DOI: 10.3389/fcell.2021.695351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondria are key organelles in eukaryotic evolution that perform crucial roles as metabolic and cellular signaling hubs. Mitochondrial function and dysfunction are associated with a range of diseases, including cancer. Mitochondria support cancer cell proliferation through biosynthetic reactions and their role in signaling, and can also promote tumorigenesis via processes such as the production of reactive oxygen species (ROS). The advent of (nuclear) genome-wide CRISPR-Cas9 deletion screens has provided gene-level resolution of the requirement of nuclear-encoded mitochondrial genes (NEMGs) for cancer cell viability (essentiality). More recently, it has become apparent that the essentiality of NEMGs is highly dependent on the cancer cell context. In particular, key tumor microenvironmental factors such as hypoxia, and changes in nutrient (e.g., glucose) availability, significantly influence the essentiality of NEMGs. In this mini-review we will discuss recent advances in our understanding of the contribution of NEMGs to cancer from CRISPR-Cas9 deletion screens, and discuss emerging concepts surrounding the context-dependent nature of mitochondrial gene essentiality.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|