1
|
Li Y, Lim C, Dismuke T, Malawsky DS, Oasa S, Bruce ZC, Offenhäuser C, Baumgartner U, D'Souza RCJ, Edwards SL, French JD, Ock LSH, Nair S, Sivakumaran H, Harris L, Tikunov AP, Hwang D, Alicea Pauneto CDM, Maybury M, Hassall T, Wainwright B, Kesari S, Stein G, Piper M, Johns TG, Sokolsky-Papkov M, Terenius L, Vukojević V, McSwain LF, Gershon TR, Day BW. Suppressing recurrence in Sonic Hedgehog subgroup medulloblastoma using the OLIG2 inhibitor CT-179. Nat Commun 2025; 16:1091. [PMID: 39904981 PMCID: PMC11794477 DOI: 10.1038/s41467-024-54861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
OLIG2-expressing tumor stem cells have been shown to drive recurrence in Sonic Hedgehog (SHH)-subgroup medulloblastoma (MB) and patients urgently need specific therapies to target this tumor cell population. Here, we investigate the therapeutic potential of the brain-penetrant orally bioavailable, OLIG2 inhibitor CT-179, using SHH-MB explant organoids, PDX and GEM SHH-MB models. We find that CT-179 disrupts OLIG2 dimerization, phosphorylation and DNA binding and alters tumor cell-cycle kinetics, increasing differentiation and apoptosis. CT-179 prolongs survival in SHH-MB PDX and GEM models and potentiates radiotherapy (RT) in vivo. Single cell transcriptomic studies (scRNA-seq) confirm that CT-179 increases differentiation and implicate Cdk4 up-regulation in maintaining proliferation during treatment. Consistent with CDK4 mediating CT-179 resistance, CT-179 combines effectively with the CDK4/6 inhibitor palbociclib, further prolonging survival in vivo. These data support therapeutic targeting of OLIG2+ tumor stem cells in regimens for SHH-driven MB, to improve response, delay recurrence and ultimately improve MB patient outcomes.
Collapse
Affiliation(s)
- Yuchen Li
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- College of Pharmacy, CHA University, 335 PangyoPangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Taylor Dismuke
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Daniel S Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Sho Oasa
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176, Stockholm, Sweden
| | - Zara C Bruce
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | | | - Ulrich Baumgartner
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia
| | - Rochelle C J D'Souza
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stacey L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Juliet D French
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Lucy S H Ock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Sneha Nair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Lachlan Harris
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrey P Tikunov
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, Emory University, Atlanta, GA, 30323, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Coral Del Mar Alicea Pauneto
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mellissa Maybury
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, 4101, Australia
| | - Timothy Hassall
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Oncology Service, Queensland Children's Hospital, Children's Health Queensland Hospital & Health Service, Brisbane, QLD, 4101, Australia
| | - Brandon Wainwright
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | - Michael Piper
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176, Stockholm, Sweden
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176, Stockholm, Sweden
| | - Leon F McSwain
- Department of Pediatrics, Emory University, Atlanta, GA, 30323, USA
| | - Timothy R Gershon
- Department of Pediatrics, Emory University, Atlanta, GA, 30323, USA.
- Children's Center for Neurosciences Research, Emory University, Atlanta, GA, 30323, USA.
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia.
- Children's Brain Cancer Centre, UQ Frazer Institute, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
2
|
Gao X, Zhuang Q, Li Y, Li G, Huang Z, Chen S, Sun S, Yang H, Jiang L, Mao Y. Single-Cell Chromatin Accessibility Analysis Reveals Subgroup-Specific TF-NTR Regulatory Circuits in Medulloblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309554. [PMID: 38884167 PMCID: PMC11321678 DOI: 10.1002/advs.202309554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Indexed: 06/18/2024]
Abstract
Medulloblastoma (MB) stands as one of the prevalent malignant brain tumors among pediatric patients. Despite its prevalence, the intricate interplay between the regulatory program driving malignancy in MB cells and their interactions with the microenvironment remains insufficiently understood. Leveraging the capabilities of single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq), the chromatin accessibility landscape is unveiled across 59,015 distinct MB cells. This expansive dataset encompasses cells belonging to discrete molecular subgroups, namely SHH, WNT, Group3, and Group4. Within these chromatin accessibility profiles, specific regulatory elements tied to individual subgroups are uncovered, shedding light on the distinct activities of transcription factors (TFs) that likely orchestrate the tumorigenesis process. Moreover, it is found that certain neurotransmitter receptors (NTRs) are subgroup-specific and can predict MB subgroup classification when combined with their associated transcription factors. Notably, targeting essential NTRs within tumors influences both the in vitro sphere-forming capability and the in vivo tumorigenic capacity of MB cells. These findings collectively provide fresh insights into comprehending the regulatory networks and cellular dynamics within MBs. Furthermore, the significance of the TF-NTR regulatory circuits is underscored as prospective biomarkers and viable therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyue Gao
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qiyuan Zhuang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Yun Li
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guochao Li
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zheng Huang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shenzhi Chen
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shaoxing Sun
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hui Yang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitute for Translational Brain ResearchShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lan Jiang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
- College of Future Technology CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ying Mao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| |
Collapse
|
3
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Clairmont CD, Gell JJ, Lau CC. Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells. Cancer Control 2024; 31:10732748241270564. [PMID: 39118322 PMCID: PMC11311176 DOI: 10.1177/10732748241270564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Despite improvements in patient outcomes, pediatric cancer remains a leading cause of non-accidental death in children. Recent genetic analysis of patients with pediatric cancers indicates an important role for both germline genetic predisposition and cancer-specific somatic driver mutations. Increasingly, evidence demonstrates that the developmental timepoint at which the cancer cell-of-origin transforms is critical to tumor identity and therapeutic response. Therefore, future therapeutic development would be bolstered by the use of disease models that faithfully recapitulate the genetic context, cell-of-origin, and developmental window of vulnerability in pediatric cancers. Human stem cells have the potential to incorporate all of these characteristics into a pediatric cancer model, while serving as a platform for rapid genetic and pharmacological testing. In this review, we describe how human stem cells have been used to model pediatric cancers and how these models compare to other pediatric cancer model modalities.
Collapse
Affiliation(s)
- Cullen D. Clairmont
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joanna J. Gell
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| | - Ching C. Lau
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| |
Collapse
|
5
|
Malawsky DS, Dismuke T, Liu H, Castellino E, Brenman J, Dasgupta B, Tikunov A, Gershon TR. Chronic AMPK inactivation slows SHH medulloblastoma progression by inhibiting mTORC1 signaling and depleting tumor stem cells. iScience 2023; 26:108443. [PMID: 38094249 PMCID: PMC10716552 DOI: 10.1016/j.isci.2023.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/28/2023] [Accepted: 11/08/2023] [Indexed: 01/19/2024] Open
Abstract
We show that inactivating AMPK in a genetic medulloblastoma model depletes tumor stem cells and slows progression. In medulloblastoma, the most common malignant pediatric brain tumor, drug-resistant stem cells co-exist with transit-amplifying cells and terminally differentiated neuronal progeny. Prior studies show that Hk2-dependent glycolysis promotes medulloblastoma progression by suppressing neural differentiation. To determine how the metabolic regulator AMPK affects medulloblastoma growth and differentiation, we inactivated AMPK genetically in medulloblastomas. We bred conditional Prkaa1 and Prkaa2 deletions into medulloblastoma-prone SmoM2 mice and compared SmoM2-driven medulloblastomas with intact or inactivated AMPK. AMPK-inactivation increased event-free survival (EFS) and altered cellular heterogeneity, increasing differentiation and decreasing tumor stem cell populations. Surprisingly, AMPK-inactivation decreased mTORC1 activity and decreased Hk2 expression. Hk2 deletion similarly depleted medulloblastoma stem cells, implicating reduced glycolysis in the AMPK-inactivated phenotype. Our results show that AMPK inactivation disproportionately impairs medulloblastoma stem cell populations typically refractory to conventional therapies.
Collapse
Affiliation(s)
- Daniel Shiloh Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Taylor Dismuke
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ethan Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jay Brenman
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrey Tikunov
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Center for Neurosciences Research, Children’s Hospital of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Center for Neurosciences Research, Children’s Hospital of Atlanta, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Pokrajac NT, Tokarew NJA, Gurdita A, Ortin-Martinez A, Wallace VA. Meningeal macrophages inhibit chemokine signaling in pre-tumor cells to suppress mouse medulloblastoma initiation. Dev Cell 2023; 58:2015-2031.e8. [PMID: 37774709 DOI: 10.1016/j.devcel.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
The microenvironment profoundly influences tumor initiation across numerous tissues but remains understudied in brain tumors. In the cerebellum, canonical Wnt signaling controlled by Norrin/Frizzled4 (Fzd4) activation in meningeal endothelial cells is a potent inhibitor of preneoplasia and tumor progression in mouse models of Sonic hedgehog medulloblastoma (Shh-MB). Single-cell transcriptome profiling and phenotyping of the meninges indicate that Norrin/Frizzled4 sustains the activation of meningeal macrophages (mMΦs), characterized by Lyve1 and CXCL4 expression, during the critical preneoplastic period. Depleting mMΦs during this period enhances preneoplasia and tumorigenesis, phenocopying the effects of Norrin loss. The anti-tumorigenic function of mMΦs is derived from the expression of CXCL4, which counters CXCL12/CXCR4 signaling in pre-tumor cells, thereby inhibiting cell-cycle progression and promoting migration away from the pre-tumor niche. These findings identify a pivotal role for mMΦs as key mediators in chemokine-regulated anti-cancer crosstalk between the stroma and pre-tumor cells in the control of MB initiation.
Collapse
Affiliation(s)
- Nenad T Pokrajac
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicholas J A Tokarew
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada.
| |
Collapse
|
7
|
Li Y, Lim C, Dismuke T, Malawsky DS, Oasa S, Bruce ZC, Offenhäuser C, Baumgartner U, D’Souza RCJ, Edwards SL, French JD, Ock LS, Nair S, Sivakumaran H, Harris L, Tikunov AP, Hwang D, Del Mar Alicea Pauneto C, Maybury M, Hassall T, Wainwright B, Kesari S, Stein G, Piper M, Johns TG, Sokolsky-Papkov M, Terenius L, Vukojević V, Gershon TR, Day BW. Preventing recurrence in Sonic Hedgehog Subgroup Medulloblastoma using the OLIG2 inhibitor CT-179. RESEARCH SQUARE 2023:rs.3.rs-2949436. [PMID: 37333134 PMCID: PMC10275055 DOI: 10.21203/rs.3.rs-2949436/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.
Collapse
Affiliation(s)
- Yuchen Li
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- These authors contributed equally
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chaemin Lim
- These authors contributed equally
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongiak-gu, Seoul 06974, Republic of Korea
| | - Taylor Dismuke
- These authors contributed equally
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Daniel S. Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Sho Oasa
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden
| | - Zara C. Bruce
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | | | - Ulrich Baumgartner
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia
| | - Rochelle C. J. D’Souza
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stacey L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Juliet D. French
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Lucy S.H. Ock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Sneha Nair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Lachlan Harris
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrey P. Tikunov
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, Emory University, Atlanta, GA 30323, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Coral Del Mar Alicea Pauneto
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mellissa Maybury
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, 4101, Australia
| | - Timothy Hassall
- The University of Queensland, Brisbane, QLD, 4072, Australia
- Oncology Service, Queensland Children’s Hospital, Children’s Health Queensland Hospital & Health Service, Brisbane, QLD, 4101, Australia
| | | | - Santosh Kesari
- Curtana Pharmaceuticals, Inc. Austin, TX 78756, United States
| | | | - Michael Piper
- The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia
| | | | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, Emory University, Atlanta, GA 30323, USA
| | - Bryan W. Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia
- Lead contact
| |
Collapse
|
8
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Kunhiraman H, McSwain L, Shahab SW, Gershon TR, MacDonald TJ, Kenney AM. IGFBP2 promotes proliferation and cell migration through STAT3 signaling in Sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2023; 11:62. [PMID: 37029430 PMCID: PMC10082504 DOI: 10.1186/s40478-023-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/25/2023] [Indexed: 04/09/2023] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain malignancy and is divided into four molecularly distinct subgroups: WNT, Sonic Hedgehog (SHHp53mut and SHHp53wt), Group 3, and Group 4. Previous reports suggest that SHH MB features a unique tumor microenvironment compared with other MB groups. To better understand how SHH MB tumor cells interact with and potentially modify their microenvironment, we performed cytokine array analysis of culture media from freshly isolated MB patient tumor cells, spontaneous SHH MB mouse tumor cells and mouse and human MB cell lines. We found that the SHH MB cells produced elevated levels of IGFBP2 compared to non-SHH MBs. We confirmed these results using ELISA, western blotting, and immunofluorescence staining. IGFBP2 is a pleiotropic member of the IGFBP super-family with secreted and intracellular functions that can modulate tumor cell proliferation, metastasis, and drug resistance, but has been understudied in medulloblastoma. We found that IGFBP2 is required for SHH MB cell proliferation, colony formation, and cell migration, through promoting STAT3 activation and upregulation of epithelial to mesenchymal transition markers; indeed, ectopic STAT3 expression fully compensated for IGFBP2 knockdown in wound healing assays. Taken together, our findings reveal novel roles for IGFBP2 in SHH medulloblastoma growth and metastasis, which is associated with very poor prognosis, and they indicate an IGFBP2-STAT3 axis that could represent a novel therapeutic target in medulloblastoma.
Collapse
Affiliation(s)
- Haritha Kunhiraman
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Leon McSwain
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Shubin W Shahab
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Timothy R Gershon
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Anna Marie Kenney
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Cleveland AH, Malawsky D, Churiwal M, Rodriguez C, Reed F, Schniederjan M, Velazquez Vega JE, Davis I, Gershon TR. PRC2 disruption in cerebellar progenitors produces cerebellar hypoplasia and aberrant myoid differentiation without blocking medulloblastoma growth. Acta Neuropathol Commun 2023; 11:8. [PMID: 36635771 PMCID: PMC9838053 DOI: 10.1186/s40478-023-01508-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
We show that Polycomb Repressive Complex-2 (PRC2) components EED and EZH2 maintain neural identity in cerebellar granule neuron progenitors (CGNPs) and SHH-driven medulloblastoma, a cancer of CGNPs. Proliferating CGNPs and medulloblastoma cells inherit neural fate commitment through epigenetic mechanisms. The PRC2 is an epigenetic regulator that has been proposed as a therapeutic target in medulloblastoma. To define PRC2 function in cerebellar development and medulloblastoma, we conditionally deleted PRC2 components Eed or Ezh2 in CGNPs and analyzed medulloblastomas induced in Eed-deleted and Ezh2-deleted CGNPs by expressing SmoM2, an oncogenic allele of Smo. Eed deletion destabilized the PRC2, depleting EED and EZH2 proteins, while Ezh2 deletion did not deplete EED. Eed-deleted cerebella were hypoplastic, with reduced proliferation, increased apoptosis, and inappropriate muscle-like differentiation. Ezh2-deleted cerebella showed similar, milder phenotypes, with fewer muscle-like cells and without reduced growth. Eed-deleted and Ezh2-deleted medulloblastomas both demonstrated myoid differentiation and progressed more rapidly than PRC2-intact controls. The PRC2 thus maintains neural commitment in CGNPs and medulloblastoma, but is not required for SHH medulloblastoma progression. Our data define a role for the PRC2 in preventing inappropriate, non-neural fates during postnatal neurogenesis, and caution that targeting the PRC2 in SHH medulloblastoma may not produce durable therapeutic effects.
Collapse
Affiliation(s)
- Abigail H. Cleveland
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Cancer Cell Biology Training Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Daniel Malawsky
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mehal Churiwal
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Claudia Rodriguez
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Frances Reed
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Matthew Schniederjan
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Jose E. Velazquez Vega
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ian Davis
- grid.10698.360000000122483208Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Timothy R. Gershon
- grid.10698.360000000122483208Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.189967.80000 0001 0941 6502Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA ,grid.189967.80000 0001 0941 6502Children’s Center for Neurosciences Research, Emory University School of Medicine, Atlanta, GA 30322 USA ,grid.189967.80000 0001 0941 6502Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
11
|
Xu Z, Murad N, Malawsky D, Tao R, Rivero-Hinojosa S, Holdhof D, Schüller U, Zhang P, Lazarski C, Rood BR, Packer R, Gershon T, Pei Y. OLIG2 Is a Determinant for the Relapse of MYC-Amplified Medulloblastoma. Clin Cancer Res 2022; 28:4278-4291. [PMID: 35736214 PMCID: PMC9529814 DOI: 10.1158/1078-0432.ccr-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Patients with MYC-amplified medulloblastoma (MB) have poor prognosis and frequently develop recurrence, thus new therapeutic approaches to prevent recurrence are needed. EXPERIMENTAL DESIGN We evaluated OLIG2 expression in a panel of mouse Myc-driven MB tumors, patient MB samples, and patient-derived xenograft (PDX) tumors and analyzed radiation sensitivity in OLIG2-high and OLIG2-low tumors in PDX lines. We assessed the effect of inhibition of OLIG2 by OLIG2-CRISPR or the small molecule inhibitor CT-179 combined with radiotherapy on tumor progression in PDX models. RESULTS We found that MYC-associated MB can be stratified into OLIG2-high and OLIG2-low tumors based on OLIG2 protein expression. In MYC-amplified MB PDX models, OLIG2-low tumors were sensitive to radiation and rarely relapsed, whereas OLIG2-high tumors were resistant to radiation and consistently developed recurrence. In OLIG2-high tumors, irradiation eliminated the bulk of tumor cells; however, a small number of tumor cells comprising OLIG2- tumor cells and rare OLIG2+ tumor cells remained in the cerebellar tumor bed when examined immediately post-irradiation. All animals harboring residual-resistant tumor cells developed relapse. The relapsed tumors mirrored the cellular composition of the primary tumors with enriched OLIG2 expression. Further studies demonstrated that OLIG2 was essential for recurrence, as OLIG2 disruption with CRISPR-mediated deletion or with the small molecule inhibitor CT-179 prevented recurrence from the residual radioresistant tumor cells. CONCLUSIONS Our studies reveal that OLIG2 is a biomarker and an effective therapeutic target in a high-risk subset of MYC-amplified MB, and OLIG2 inhibitor combined with radiotherapy represents a novel effective approach for treating this devastating disease.
Collapse
Affiliation(s)
- Zhenhua Xu
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Najiba Murad
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Daniel Malawsky
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ran Tao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Samuel Rivero-Hinojosa
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
- Research Institute Children’s Cancer Center, Martinistraße 52, Hamburg 20251, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
- Research Institute Children’s Cancer Center, Martinistraße 52, Hamburg 20251, Germany
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Peng Zhang
- Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100069, China
| | - Christopher Lazarski
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Brian R. Rood
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Roger Packer
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Timothy Gershon
- Department of Neurology, University North Carolina, School of Medicine, Chapel Hill, NC 27516, USA
| | - Yanxin Pei
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
- Lead contact
| |
Collapse
|
12
|
Lim C, Dismuke T, Malawsky D, Ramsey JD, Hwang D, Godfrey VL, Kabanov AV, Gershon TR, Sokolsky-Papkov M. Enhancing CDK4/6 inhibitor therapy for medulloblastoma using nanoparticle delivery and scRNA-seq-guided combination with sapanisertib. SCIENCE ADVANCES 2022; 8:eabl5838. [PMID: 35080986 PMCID: PMC8791615 DOI: 10.1126/sciadv.abl5838] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/24/2021] [Indexed: 05/03/2023]
Abstract
The therapeutic potential of CDK4/6 inhibitors for brain tumors has been limited by recurrence. To address recurrence, we tested a nanoparticle formulation of CDK4/6 inhibitor palbociclib (POx-Palbo) in mice genetically-engineered to develop SHH-driven medulloblastoma, alone or in combination with specific agents suggested by our analysis. Nanoparticle encapsulation reduced palbociclib toxicity, enabled parenteral administration, improved CNS pharmacokinetics, and extended mouse survival, but recurrence persisted. scRNA-seq identified up-regulation of glutamate transporter Slc1a2 and down-regulation of diverse ribosomal genes in proliferating medulloblastoma cells in POx-Palbo-treated mice, suggesting mTORC1 signaling suppression, subsequently confirmed by decreased 4EBP1 phosphorylation. Combining POx-Palbo with the mTORC1 inhibitor sapanisertib produced mutually enhancing effects and prolonged mouse survival compared to either agent alone, contrasting markedly with other tested drug combinations. Our data show the potential of nanoparticle formulation and scRNA-seq analysis of resistance to improve brain tumor treatment and identify POx-Palbo + Sapanisertib as effective combinatorial therapy for SHH medulloblastoma.
Collapse
Affiliation(s)
- Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor Dismuke
- Department of Neurology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Malawsky
- Department of Neurology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Jacob D. Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Virginia L. Godfrey
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander V. Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Timothy R. Gershon
- Department of Neurology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Hwang D, Dismuke T, Tikunov A, Rosen EP, Kagel JR, Ramsey JD, Lim C, Zamboni W, Kabanov AV, Gershon TR, Sokolsky-Papkov PhD M. Poly(2-oxazoline) nanoparticle delivery enhances the therapeutic potential of vismodegib for medulloblastoma by improving CNS pharmacokinetics and reducing systemic toxicity. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102345. [PMID: 33259959 PMCID: PMC8160025 DOI: 10.1016/j.nano.2020.102345] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
We report a nanoparticle formulation of the SHH-pathway inhibitor vismodegib that improves efficacy for medulloblastoma, while reducing toxicity. Limited blood-brain barrier (BBB) penetration and dose-limiting extitle/citraneural toxicities complicate systemic therapies for brain tumors. Vismodegib is FDA-approved for SHH-driven basal cell carcinoma, but implementation for medulloblastoma has been limited by inadequate efficacy and excessive bone toxicity. To address these issues through optimized drug delivery, we formulated vismodegib in polyoxazoline block copolymer micelles (POx-vismo). We then evaluated POx-vismo in transgenic mice that develop SHH-driven medulloblastomas with native vasculature and tumor microenvironment. POx-vismo improved CNS pharmacokinetics and reduced bone toxicity. Mechanistically, the nanoparticle carrier did not enter the CNS, and acted within the vascular compartment to improve drug delivery. Unlike conventional vismodegib, POx-vismo extended survival in medulloblastoma-bearing mice. Our results show the broad potential for non-targeted nanoparticle formulation to improve systemic brain tumor therapy, and specifically to improve vismodegib therapy for SHH-driven cancers.
Collapse
Affiliation(s)
- Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Taylor Dismuke
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andrey Tikunov
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elias P Rosen
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - John R Kagel
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - William Zamboni
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Timothy R Gershon
- Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Marina Sokolsky-Papkov PhD
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|