1
|
Zhou R, Wang Z, Song Y, Liu S, Dai Z. Tree Frogs Alter Their Behavioral Strategies While Landing On Vertical Perches. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:15-24. [PMID: 39221750 DOI: 10.1002/jez.2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
As an arboreal animal, tree frogs face diverse challenges when landing on perches, including variations in substrate shape, diameter, flexibility, and angular distribution, with potentially significant consequences for failed landings. Research on tree frog landing behavior on perches, especially concerning landing on vertical substrates, remains limited. This study investigated the landing strategies (forelimb, abdomen, and hindlimb) of tree frogs on vertical perches, considering perch diameter. Although all three strategies were observed across perches of different diameters, their frequencies differed. Forelimb landing was most common across all perch diameters, with its frequency increasing with perch diameter, while abdomen and hindlimb landing strategies were more prevalent on smaller diameter perches. During the process from take-off to landing, the body axis underwent some deviation owing to the asymmetric movement of the left and right limbs; however, these deviations did not significantly differ among landing strategies. Additionally, different landing strategies led to variations in the landing forces, with abdominal landings generating significantly higher impact forces than the other two strategies. These findings provide insights into the biomechanics and biological adaptations of tree frogs when landing on challenging substrates, such as leaves or branches.
Collapse
Affiliation(s)
- Rui Zhou
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen, China
| | - Yi Song
- Taizhou Research Institute, Zhejiang University of Technology, Taizhou, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuhao Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
2
|
Fang S, Chen G, Liu T, Zhou W, Wang Y, Wang X. Role of Tail Dynamics on the Climbing Performance of Gecko-Inspired Robots: A Simulation and Experimental Study. Biomimetics (Basel) 2024; 9:625. [PMID: 39451831 PMCID: PMC11505542 DOI: 10.3390/biomimetics9100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Geckos are renowned for their exceptional climbing abilities, enabled by their specialized feet with hairy toes that attach to surfaces using van der Waals forces. Inspired by these capabilities, various gecko-like robots have been developed for high-risk applications, such as search and rescue. While most research has focused on adhesion mechanisms, the gecko's tail also plays a critical role in maintaining balance and stability. In this study, we systematically explore the impact of tail dynamics on the climbing performance of gecko-inspired robots through both simulation and experimental analysis. We developed a dynamic climbing simulation system that models the robot's specialized attachment devices and predicts contact failures. Additionally, an adjustable-angle force measurement platform was constructed to validate the simulation results. Our findings reveal the significant influence of the tail on the robot's balance, stability, and maneuverability, providing insights for further optimizing climbing robot performance.
Collapse
Affiliation(s)
- Shengchang Fang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (S.F.); (G.C.); (T.L.); (W.Z.)
- University of Science and Technology of China, Hefei 230026, China
| | - Guisong Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (S.F.); (G.C.); (T.L.); (W.Z.)
| | - Tong Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (S.F.); (G.C.); (T.L.); (W.Z.)
- University of Science and Technology of China, Hefei 230026, China
| | - Weimian Zhou
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (S.F.); (G.C.); (T.L.); (W.Z.)
- University of Science and Technology of China, Hefei 230026, China
| | - Yucheng Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (S.F.); (G.C.); (T.L.); (W.Z.)
| | - Xiaojie Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (S.F.); (G.C.); (T.L.); (W.Z.)
| |
Collapse
|
3
|
Chellapurath M, Khandelwal PC, Schulz AK. Bioinspired robots can foster nature conservation. Front Robot AI 2023; 10:1145798. [PMID: 37920863 PMCID: PMC10619165 DOI: 10.3389/frobt.2023.1145798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
We live in a time of unprecedented scientific and human progress while being increasingly aware of its negative impacts on our planet's health. Aerial, terrestrial, and aquatic ecosystems have significantly declined putting us on course to a sixth mass extinction event. Nonetheless, the advances made in science, engineering, and technology have given us the opportunity to reverse some of our ecosystem damage and preserve them through conservation efforts around the world. However, current conservation efforts are primarily human led with assistance from conventional robotic systems which limit their scope and effectiveness, along with negatively impacting the surroundings. In this perspective, we present the field of bioinspired robotics to develop versatile agents for future conservation efforts that can operate in the natural environment while minimizing the disturbance/impact to its inhabitants and the environment's natural state. We provide an operational and environmental framework that should be considered while developing bioinspired robots for conservation. These considerations go beyond addressing the challenges of human-led conservation efforts and leverage the advancements in the field of materials, intelligence, and energy harvesting, to make bioinspired robots move and sense like animals. In doing so, it makes bioinspired robots an attractive, non-invasive, sustainable, and effective conservation tool for exploration, data collection, intervention, and maintenance tasks. Finally, we discuss the development of bioinspired robots in the context of collaboration, practicality, and applicability that would ensure their further development and widespread use to protect and preserve our natural world.
Collapse
Affiliation(s)
- Mrudul Chellapurath
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Pranav C. Khandelwal
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute of Flight Mechanics and Controls, University of Stuttgart, Stuttgart, Germany
| | - Andrew K. Schulz
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
4
|
Li C, Xu AJ, Beery E, Hsieh ST, Kane SA. Putting a new spin on insect jumping performance using 3D modeling and computer simulations of spotted lanternfly nymphs. J Exp Biol 2023; 226:jeb246340. [PMID: 37668246 PMCID: PMC10565111 DOI: 10.1242/jeb.246340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
How animals jump and land on diverse surfaces is ecologically important and relevant to bioinspired robotics. Here, we describe the jumping biomechanics of the planthopper Lycorma delicatula (spotted lanternfly), an invasive insect in the USA that jumps frequently for dispersal, locomotion and predator evasion. High-speed video was used to analyze jumping by spotted lanternfly nymphs from take-off to impact on compliant surfaces. These insects used rapid hindleg extensions to achieve high take-off speeds (2.7-3.4 m s-1) and accelerations (800-1000 m s-2), with mid-air trajectories consistent with ballistic motion without drag forces or steering. Despite rotating rapidly (5-45 Hz) about time-varying axes of rotation, they landed successfully in 58.9% of trials. They also attained the most successful impact orientation significantly more often than predicted by chance, consistent with their using attitude control. Notably, these insects were able to land successfully when impacting surfaces at all angles, pointing to the importance of collisional recovery behaviors. To further understand their rotational dynamics, we created realistic 3D rendered models of spotted lanternflies and used them to compute their mechanical properties during jumping. Computer simulations based on these models and drag torques estimated from fits to tracked data successfully predicted several features of the measured rotational kinematics. This analysis showed that the rotational inertia of spotted lanternfly nymphs is predominantly due to their legs, enabling them to use posture changes as well as drag torque to control their angular velocity, and hence their orientation, thereby facilitating predominately successful landings when jumping.
Collapse
Affiliation(s)
- Chengpei Li
- Physics and Astronomy Department, Haverford College, Haverford, PA 19041, USA
| | - Aaron J. Xu
- Physics and Astronomy Department, Haverford College, Haverford, PA 19041, USA
| | - Eric Beery
- Physics and Astronomy Department, Haverford College, Haverford, PA 19041, USA
| | - S. Tonia Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Suzanne Amador Kane
- Physics and Astronomy Department, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
5
|
Ortega-Jimenez VM, Jusufi A, Brown CE, Zeng Y, Kumar S, Siddall R, Kim B, Challita EJ, Pavlik Z, Priess M, Umhofer T, Koh JS, Socha JJ, Dudley R, Bhamla MS. Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots. BIOINSPIRATION & BIOMIMETICS 2023; 18:051001. [PMID: 37552773 DOI: 10.1088/1748-3190/acdb1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/02/2023] [Indexed: 08/10/2023]
Abstract
Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.
Collapse
Affiliation(s)
- Victor M Ortega-Jimenez
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Ardian Jusufi
- Soft Kinetic Group, Engineering Sciences Department, Empa Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
- University of Zurich, Institutes for Neuroinformatics and Palaeontology, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Macquarie University, Sydney, NSW 2109, Australia
| | - Christian E Brown
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
| | - Yu Zeng
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States of America
| | - Sunny Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| | - Robert Siddall
- Aerial Robotics Lab, Imperial College of London, London, United Kingdom
| | - Baekgyeom Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-do 16499, Republic of Korea
| | - Elio J Challita
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| | - Zoe Pavlik
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Meredith Priess
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Thomas Umhofer
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, Gyeonggi-do 16499, Republic of Korea
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Robert Dudley
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| |
Collapse
|
6
|
Figueroa A, Low MEY, Lim KKP. Singapore's herpetofauna: updated and annotated checklist, history, conservation, and distribution. Zootaxa 2023; 5287:1-378. [PMID: 37518684 DOI: 10.11646/zootaxa.5287.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 08/01/2023]
Abstract
Given Singapore's location at the confluence of important maritime trading routes, and that it was established as a British East India Company trading post in 1819, it is unsurprising that Singapore has become one of the centres of natural history collecting and research in Southeast Asia. Despite its small size, Singapore is home to a diverse herpetofauna assemblage and boasts a rich herpetological history. The first systematic studies of Singapore's herpetofauna (within the Linnaean binomial framework) date back to Stamford Raffles and the naturalists hired by him who first came to the island in 1819. Specimens that were collected during and after this time were deposited in museums worldwide. Over time, 39 species from Singapore were described as new to science. Due to the entrepôt nature of Singapore with its associated purchasing and trading of specimens (both alive and dead), poor record-keeping, and human introductions, numerous extraneous species from outside of Singapore were reported to occur on the island. Such issues have left a complicated legacy of ambiguous records and taxonomic complications concerning the identity of Singapore's species-rich herpetofauna, many of which were only resolved in the past 30-40 years. By compiling a comprehensive collection of records and publications relating to the herpetofauna of Singapore, we construct an updated and more accurate listing of the herpetofauna of Singapore. Our investigation culminated in the evaluation of 309 species, in which we compiled a final species checklist recognising 166 species (149 native and 17 non-native established species). Among the 149 native species are two caecilians, 24 frogs, one crocodilian, 13 turtles (three visitors), 34 lizards, and 75 snakes. Of the 17 non-native species are five frogs, four turtles, six lizards, and two snakes. The remaining 143 species represent species to be excluded from Singapore's herpetofauna species checklist. For each of the 309 species examined, we provide species accounts and explanatory annotations. Furthermore, we discuss Singapore's herpetofauna from a historical and conservation perspective. Immediate deforestation and nationwide urbanisation following colonisation completely eliminated many species from throughout much of the country and restricted them to small, degraded forest patches. We hope this publication highlights the importance of publishing observations and serves as a valuable resource to future researchers, naturalists, biological consultants, and policy makers in initiating studies on species ecology, distribution, status, and promoting conservation efforts to safeguard Singapore's herpetofauna.
Collapse
Affiliation(s)
| | - Martyn E Y Low
- Lee Kong Chian Natural History Museum; 2 Conservatory Drive; Singapore 117377.
| | - Kelvin K P Lim
- Lee Kong Chian Natural History Museum; 2 Conservatory Drive; Singapore 117377.
| |
Collapse
|
7
|
Chang IC, Lin PC. Dynamic turning and running of a hexapod robot using a separated and laterally arranged two-leg model. BIOINSPIRATION & BIOMIMETICS 2023; 18:036005. [PMID: 36947883 DOI: 10.1088/1748-3190/acc6ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
We report on the development of separated and laterally arranged two-leg (SLTL) models with/without differentiated leg properties and their use as the dynamic running and turning templates for a hexapod robot. The laterally arranged two-leg morphology enables differential driving for turning. The differentiable leg settings, such as stiffness, enables the model to adopt unbalanced leg arrangements of empirical legged gaits, such as a tripod gait, into consideration. The fixed-point motion of the model was utilized as the main methodology to plan dynamic running and turning, in which the plot of one-step distance versus period was constructed for the legs' operation point selection and matching. The proposed methodology was experimentally validated using four indices: turning curvature, flight phase, motion stability, and energy efficiency. The experimental results show that the running robot using the SLTL model with differentiated leg stiffness has better energy efficiency than one without by 4%, while the latter model has identical performance to the original spring-loaded inverted pendulum model with rolling contact. As for turning, the robot using the SLTL models with/without differentiated leg stiffness can preserve dynamic turning in all experiments with turning curvatures up to0.28m-1and0.30m-1, respectively,33%and43%more than the robot using the original model-less phase-shift turning strategy (0.21 m-1). Using the proposed model-based strategy, the flight phase of the robot turning in all curvatures (including straight running) maintains around 20%, the root-mean-squared (RMS) values of pitch and roll remains less than3 deg, and the specific resistance (SR) is bounded between0.64 and 0.73. By contrast, the robot using the phase-shifting turning strategy can maintain dynamic motion up to a turning curvature of0.21 m-1. A further increase in phase shifting not only does not increase the turning curvature but also changes the robot motion from running to walking. In this case, no flight phase exists, theSRjumps up significantly, and RMS values of pitch and roll also increase dramatically. In short, the experimental validation confirms the effectiveness of the proposed methodology for initiating the dynamic running and turning of the robot.
Collapse
Affiliation(s)
- I-Chia Chang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Chun Lin
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Siddall R, Zufferey R, Armanini S, Zhang K, Sareh S, Sergeev E. The Natural Robotics Contest: crowdsourced biomimetic design. BIOINSPIRATION & BIOMIMETICS 2023; 18:036002. [PMID: 36867873 DOI: 10.1088/1748-3190/acc14b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Biomimetic and bioinspired design is not only a potent resource for roboticists looking to develop robust engineering systems or understand the natural world. It is also a uniquely accessible entry point into science and technology. Every person on Earth constantly interacts with nature, and most people have an intuitive sense of animal and plant behaviour, even without realizing it. The Natural Robotics Contest is novel piece of science communication that takes advantage of this intuition, and creates an opportunity for anyone with an interest in nature or robotics to submit their idea and have it turned into a real engineering system. In this paper we will discuss the competition's submissions, which show how the public thinks of nature as well as the problems people see as most pressing for engineers to solve. We will then show our design process from the winning submitted concept sketch through to functioning robot, to offer a case study in biomimetic robot design. The winning design is a robotic fish which uses gill structures to filter out microplastics. This was fabricated into an open source robot with a novel 3D printed gill design. By presenting the competition and the winning entry we hope to foster further interest in nature-inspired design, and increase the interplay between nature and engineering in the minds of readers.
Collapse
Affiliation(s)
| | - Raphael Zufferey
- École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Ketao Zhang
- Queen Mary University of London, London, United Kingdom
| | - Sina Sareh
- Royal College of Art, London, United Kingdom
| | | |
Collapse
|
9
|
Zheng P, Xiao F, Nguyen PH, Farinha A, Kovac M. Metamorphic aerial robot capable of mid-air shape morphing for rapid perching. Sci Rep 2023; 13:1297. [PMID: 36690665 PMCID: PMC9870873 DOI: 10.1038/s41598-022-26066-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023] Open
Abstract
Aerial robots can perch onto structures at heights to reduce energy use or to remain firmly in place when interacting with their surroundings. Like how birds have wings to fly and legs to perch, these bio-inspired aerial robots use independent perching modules. However, modular design not only increases the weight of the robot but also its size, reducing the areas that the robot can access. To mitigate these problems, we take inspiration from gliding and tree-dwelling mammals such as sugar gliders and sloths. We noted how gliding mammals morph their whole limb to transit between flight and perch, and how sloths optimized their physiology to encourage energy-efficient perching. These insights are applied to design a quadrotor robot that transitions between morphologies to fly and perch with a single-direction tendon drive. The robot's bi-stable arm is rigid in flight but will conform to its target in 0.97 s when perching, holding its grasp with minimal energy use. We achieved a [Formula: see text] overall mass reduction by integrating this capability into a single body. The robot perches by a controlled descent or a free-falling drop to avoid turbulent aerodynamic effects. Our proposed design solution can fulfill the need for small perching robots in cluttered environments.
Collapse
Affiliation(s)
- Peter Zheng
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK.
- The Grantham Institute-Climate Change and the Environment, Imperial College London, London, SW7 2AZ, UK.
| | - Feng Xiao
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
| | - Pham Huy Nguyen
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
| | - Andre Farinha
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
| | - Mirko Kovac
- Aerial Robotics Laboratory, Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK.
- Laboratory of Sustainability Robotics, Swiss Federal Laboratories of Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
10
|
Zang G, Dai Z, Manoonpong P. The Roles and Comparison of Rigid and Soft Tails in Gecko-Inspired Climbing Robots: A Mini-Review. Front Bioeng Biotechnol 2022; 10:900389. [PMID: 35910016 PMCID: PMC9335492 DOI: 10.3389/fbioe.2022.900389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Geckos use millions of dry bristles on their toes to adhere to and rapidly run up walls and across ceilings. This has inspired the successful development of dry adhesive materials and their application to climbing robots. The tails of geckos also help realize adaptive and robust climbing behavior. Existing climbing robots with gecko-inspired tails have demonstrated improved locomotion performance. However, few studies have focused on the role of a robot’s gecko-inspired tail when climbing a sloped surface and its effects on the overall locomotion performance. Thus, this paper reviews and analyzes the roles of the tails of geckos and robots in terms of their climbing performances and compares the advantages and disadvantages of robots’ tails made of rigid and soft materials. This review could assist roboticists decide whether a tail is required for their robots and which materials and motion types to use for the tail in order to fulfill their desired functions and even allow the robots to adapt to different environments and tasks.
Collapse
Affiliation(s)
- Guangyuan Zang
- Institute of Bio-inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- *Correspondence: Guangyuan Zang, ; Poramate Manoonpong,
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Poramate Manoonpong
- Institute of Bio-inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
- *Correspondence: Guangyuan Zang, ; Poramate Manoonpong,
| |
Collapse
|
11
|
Shao D, Wang Z, Ji A, Dai Z, Manoonpong P. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation. BIOINSPIRATION & BIOMIMETICS 2022; 17:036008. [PMID: 35236786 DOI: 10.1088/1748-3190/ac5a3c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Today's gecko-inspired robots have shown the ability of omnidirectional climbing on slopes with a low centre of mass. However, such an ability cannot efficiently cope with bumpy terrains or terrains with obstacles. In this study, we developed a gecko-inspired robot (Nyxbot) with an adaptable body height to overcome this limitation. Based on an analysis of the skeletal system and kinematics of real geckos, the adhesive mechanism and leg structure design of the robot were designed to endow it with adhesion and adjustable body height capabilities. Neural control with exteroceptive sensory feedback is utilised to realise body height adaptability while climbing on a slope. The locomotion performance and body adaptability of the robot were tested by conducting slope climbing and obstacle crossing experiments. The gecko robot can climb a 30° slope with spontaneous obstacle crossing (maximum obstacle height of 38% of the body height) and can climb even steeper slopes (up to 60°) without an obstacle or bump. Using 3D force measuring platforms for ground reaction force analysis of geckos and the robot, we show that the motions of the developed robot driven by neural control and the motions of geckos are dynamically comparable. To this end, this study provides a basis for developing climbing robots with adaptive bump/obstacle crossing on slopes towards more agile and versatile gecko-like locomotion.
Collapse
Affiliation(s)
- Donghao Shao
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Zhouyi Wang
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Aihong Ji
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Zhendong Dai
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Poramate Manoonpong
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Bio-Inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
- Embodied AI and Neurorobotics Laboratory, SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
12
|
Land–Air–Wall Cross-Domain Robot Based on Gecko Landing Bionic Behavior: System Design, Modeling, and Experiment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Based on the bionic behavior of geckos, this paper presents a land–air–wall cross-domain robot which can fly in air, run on the ground, and adhere to various wall surfaces. When geckos jump and adsorb to vertical surfaces such as trunks, they can still adsorb to the wall with a large contact speed. Inspired by this phenomenon, we analyze the mechanism, apply it to our robot, and optimize the design of the robot structure. In addition, geckos use their tails to adjust posture to achieve abdominal landing during the process of falling. Inspired by this phenomenon, based on the rotor lift/power curve, we optimize the center of gravity by controlling the servo angle. The initial center of gravity offset of the robot is estimated by the extended state observer. The method reduces the distance between the center of gravity and the geometric center, balances the load of each propeller, and finally reduces the total power. The experiment and simulation results validate the feasibility of the land–air–wall cross-domain robot and the bionic methods.
Collapse
|
13
|
Schwab F, Wiesemüller F, Mucignat C, Park YL, Lunati I, Kovac M, Jusufi A. Undulatory Swimming Performance Explored With a Biorobotic Fish and Measured by Soft Sensors and Particle Image Velocimetry. Front Robot AI 2022; 8:791722. [PMID: 35071335 PMCID: PMC8778575 DOI: 10.3389/frobt.2021.791722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Due to the difficulty of manipulating muscle activation in live, freely swimming fish, a thorough examination of the body kinematics, propulsive performance, and muscle activity patterns in fish during undulatory swimming motion has not been conducted. We propose to use soft robotic model animals as experimental platforms to address biomechanics questions and acquire understanding into subcarangiform fish swimming behavior. We extend previous research on a bio-inspired soft robotic fish equipped with two pneumatic actuators and soft strain sensors to investigate swimming performance in undulation frequencies between 0.3 and 0.7 Hz and flow rates ranging from 0 to 20c m s in a recirculating flow tank. We demonstrate the potential of eutectic gallium-indium (eGaIn) sensors to measure the lateral deflection of a robotic fish in real time, a controller that is able to keep a constant undulatory amplitude in varying flow conditions, as well as using Particle Image Velocimetry (PIV) to characterizing swimming performance across a range of flow speeds and give a qualitative measurement of thrust force exerted by the physical platform without the need of externally attached force sensors. A detailed wake structure was then analyzed with Dynamic Mode Decomposition (DMD) to highlight different wave modes present in the robot's swimming motion and provide insights into the efficiency of the robotic swimmer. In the future, we anticipate 3D-PIV with DMD serving as a global framework for comparing the performance of diverse bio-inspired swimming robots against a variety of swimming animals.
Collapse
Affiliation(s)
- Fabian Schwab
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Fabian Wiesemüller
- Aerial Robotics Lab (ARL), Department of Aeronautics, Imperial College London, London, United Kingdom
- Materials and Technology Center of Robotics, EMPA, Zürich, Switzerland
| | - Claudio Mucignat
- Laboratory for Multiscale Studies in Building Physics, EMPA, Zürich, Switzerland
| | - Yong-Lae Park
- Soft Robotics and Bionics Lab, Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Ivan Lunati
- Laboratory for Multiscale Studies in Building Physics, EMPA, Zürich, Switzerland
| | - Mirko Kovac
- Aerial Robotics Lab (ARL), Department of Aeronautics, Imperial College London, London, United Kingdom
- Materials and Technology Center of Robotics, EMPA, Zürich, Switzerland
| | - Ardian Jusufi
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
14
|
Stenum J. Gliding geckos snap their tail to stick the landing. J Exp Biol 2021. [DOI: 10.1242/jeb.237388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Schwab F, Lunsford ET, Hong T, Wiesemüller F, Kovac M, Park YL, Akanyeti O, Liao JC, Jusufi A. Body Caudal Undulation measured by Soft Sensors and emulated by Soft Artificial Muscles. Integr Comp Biol 2021; 61:1955-1965. [PMID: 34415009 PMCID: PMC8699111 DOI: 10.1093/icb/icab182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
We propose the use of bio-inspired robotics equipped with soft sensor technologies to gain a better understanding of the mechanics and control of animal movement. Soft robotic systems can be used to generate new hypotheses and uncover fundamental principles underlying animal locomotion and sensory capabilities, which could subsequently be validated using living organisms. Physical models increasingly include lateral body movements, notably back and tail bending, which are necessary for horizontal plane undulation in model systems ranging from fish to amphibians and reptiles. We present a comparative study of the use of physical modeling in conjunction with soft robotics and integrated soft and hyperelastic sensors to monitor local pressures, enabling local feedback control, and discuss issues related to understanding the mechanics and control of undulatory locomotion. A parallel approach combining live animal data with biorobotic physical modeling promises to be beneficial for gaining a better understanding of systems in motion.
Collapse
Affiliation(s)
- Fabian Schwab
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Elias T Lunsford
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida, 32080, U.S.A
| | - Taehwa Hong
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Korea
| | - Fabian Wiesemüller
- Materials and Technology Center of Robotics, EMPA, Überlandstrasse 129, Zürich, 8600, Switzerland.,Aerial Robotics Lab (ARL), Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Mirko Kovac
- Materials and Technology Center of Robotics, EMPA, Überlandstrasse 129, Zürich, 8600, Switzerland.,Aerial Robotics Lab (ARL), Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yong-Lae Park
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Korea
| | - Otar Akanyeti
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida, 32080, U.S.A.,Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3FL, UK
| | - James C Liao
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida, 32080, U.S.A
| | - Ardian Jusufi
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| |
Collapse
|