1
|
Broillet-Olivier E, Wenger Y, Gilliand N, Cadas H, Sabatasso S, Broillet MC, Brechbühl J. Development of an rpS6-Based Ex Vivo Assay for the Analysis of Neuronal Activity in Mouse and Human Olfactory Systems. Int J Mol Sci 2024; 25:13173. [PMID: 39684883 DOI: 10.3390/ijms252313173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.
Collapse
Affiliation(s)
- Emma Broillet-Olivier
- Faculty of Medicine Hradec Králové, Charles University, 500 00 Hradec Králové, Czech Republic
| | - Yaëlle Wenger
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Noah Gilliand
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Hugues Cadas
- Faculty of Biology and Medicine, University of Lausanne, Bugnon 9, CH-1005 Lausanne, Switzerland
- Faculty Unit of Anatomy and Morphology, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Vulliette 4, CH-1000 Lausanne, Switzerland
| | - Sara Sabatasso
- Faculty of Biology and Medicine, University of Lausanne, Bugnon 9, CH-1005 Lausanne, Switzerland
- Faculty Unit of Anatomy and Morphology, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Vulliette 4, CH-1000 Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| |
Collapse
|
2
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
3
|
Verro B, Vivoli G, Saraniti C. Hyposmia in COVID-19: Temporal Recovery of Smell: A Preliminary Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1511. [PMID: 37763630 PMCID: PMC10535790 DOI: 10.3390/medicina59091511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Hypo/anosmia is a characteristic symptom of COVID-19 infection. The aim of this study is to investigate the time of smell recovery and to identify a possible order of perception recovery of different odors in COVID-19 patients. Materials and Methods: A prospective observational study was conducted on not hospitalized COVID-19 patients, selected according to eligible criteria. The study was approved by the Ethical Committee. A questionnaire formulated by our team was submitted to patients in order to know the duration of the hypo/anosmia and hypo/ageusia and the order of odor recovery: vanillin (mixed olfactory/gustatory substances), phenyl ethyl alcohol (rosewater) (pure olfactory substances), eucalyptol (mixed olfactory/trigeminal substances), and eugenol (mixed olfactory/trigeminal/gustatory substances). Results: 181 patients were included. Hypo/ageusia and hypo/anosmia lasted on average 10.25 (±8.26) and 12.8 (±8.80) days, respectively. The most frequent odor recovery sequence was: (1) phenyl ethyl alcohol; (2) eucalyptol; (3) vanillin; and (4) eugenol. In COVID-19 patients, hypo/anosmia occurs more often in women and at a young age. Conclusions: This preliminary investigation highlighted novel data: there is a chronological order in perception recovery of different olfactory substances and, therefore, in the restoration of the various sensitive nerve pathways involved in the sense of smell.
Collapse
Affiliation(s)
- Barbara Verro
- Division of Otorhinolaryngology, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90127 Palermo, Italy;
| | - Giulia Vivoli
- Division of Plastic, Reconstructive, Microvascular and Aesthetic Surgery, Department of Maternal-Infant and Adult Surgical Medical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Carmelo Saraniti
- Division of Otorhinolaryngology, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
4
|
Llana T, Mendez M, Garces-Arilla S, Hidalgo V, Mendez-Lopez M, Juan MC. Association between olfactory dysfunction and mood disturbances with objective and subjective cognitive deficits in long-COVID. Front Psychol 2023; 14:1076743. [PMID: 36818111 PMCID: PMC9932904 DOI: 10.3389/fpsyg.2023.1076743] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background and purpose The coronavirus disease 2019 (COVID-19) has been associated with olfactory dysfunction. The persistent symptoms of anosmia or hyposmia were associated in previous studies with the development of memory impairment and mood disturbances. We aimed to investigate the association between the chronicity of reported olfactory dysfunction and subjective and objective cognitive performance in long-COVID patients and to explore whether their emotional symptoms are related to their cognition. Methods One hundred twenty-eight long-COVID participants were recruited. Reported symptomatology, subjective memory complaints, anxiety and depression symptomatology, and trait-anxiety were assessed. Subjective memory complaints and mood disturbances were compared among groups of participants with olfactory dysfunction as an acute (AOD), persistent (POD), or nonexistent (NOD) symptom. Seventy-six of the volunteers also participated in a face-to-face session to assess their objective performance on tests of general cognitive function and verbal declarative memory. Objective cognitive performance and mood disturbances were compared among the AOD, POD, and NOD groups. Results The subjective memory complaints and the anxiety and depression symptoms were similar among the groups, but the score in general cognitive function was lower in the participants with symptoms of acute olfactory dysfunction than in those with no olfactory symptoms at any time. Participants' memory complaints were positively related to their emotional symptoms. The relationship between depressive symptomatology and memory complaints interacted with the olfactory dysfunction, as it only occurred in the participants without symptoms of olfactory dysfunction. Depressive symptomatology and acute olfactory symptoms were negatively associated with general cognitive function and delayed memory performance. The months elapsed from diagnosis to assessment also predicted delayed memory performance. Anxious symptomatology was negatively associated with the immediate ability to recall verbal information in participants who did not present olfactory dysfunction in the acute phase of the infection. Conclusion Olfactory dysfunction in the acute phase of the infection by COVID-19 is related to cognitive deficits in objective tests, and mood disturbances are associated with self-reported and objective memory. These findings may contribute to further understanding the neuropsychological and emotional aspects of long-COVID.
Collapse
Affiliation(s)
- Tania Llana
- Department of Psychology, Faculty of Psychology, University of Oviedo, Oviedo, Spain
- Neuroscience Institute of Princedom of Asturias (INEUROPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain
| | - Marta Mendez
- Department of Psychology, Faculty of Psychology, University of Oviedo, Oviedo, Spain
- Neuroscience Institute of Princedom of Asturias (INEUROPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
| | - Sara Garces-Arilla
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain
- Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| | - Vanesa Hidalgo
- Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Magdalena Mendez-Lopez
- Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
- IIS Aragon, Zaragoza, Spain
| | - M.-Carmen Juan
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
5
|
Brechbühl J, Ferreira F, Lopes AC, Corset E, Gilliand N, Broillet MC. Ocular Symptoms Associated with COVID-19 Are Correlated with the Expression Profile of Mouse SARS-CoV-2 Binding Sites. Viruses 2023; 15:354. [PMID: 36851565 PMCID: PMC9961464 DOI: 10.3390/v15020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The COVID-19 pandemic has engendered significant scientific efforts in the understanding of its infectious agent SARS-CoV-2 and of its associated symptoms. A peculiar characteristic of this virus lies in its ability to challenge our senses, as its infection can lead to anosmia and ageusia. While ocular symptoms, such as conjunctivitis, optic neuritis or dry eyes, are also reported after viral infection, they have lower frequencies and severities, and their functional development is still elusive. Here, using combined technical approaches based on histological and gene profiling methods, we characterized the expression of SARS-CoV-2 binding sites (Ace2/Tmprss2) in the mouse eye. We found that ACE2 was ectopically expressed in subtissular ocular regions, such as in the optic nerve and in the Harderian/intraorbital lacrimal glands. Moreover, we observed an important variation of Ace2/Tmprss2 expression that is not only dependent on the age and sex of the animal, but also highly heterogenous between individuals. Our results thus give new insight into the expression of SARS-CoV-2 binding sites in the mouse eye and propose an interpretation of the human ocular-associated symptoms linked to SARS-CoV-2.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | | | | | | | | | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| |
Collapse
|
6
|
de Vallière A, Lopes AC, Addorisio A, Gilliand N, Nenniger Tosato M, Wood D, Brechbühl J, Broillet MC. Food preference acquired by social transmission is altered by the absence of the olfactory marker protein in mice. Front Nutr 2022; 9:1026373. [PMID: 36438763 PMCID: PMC9682023 DOI: 10.3389/fnut.2022.1026373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Food preference is conserved from the most primitive organisms to social animals including humans. A continuous integration of olfactory cues present both in food and in the different environmental and physiological contexts favors the intake of a given source of food or its avoidance. Remarkably, in mice, food preference can also be acquired by olfactory communication in-between conspecifics, a behavior known as the social transmission of food preference (STFP). STFP occurs when a mouse sniffs the breath of a conspecific who has previously eaten a novel food emitting specific odorants and will then develop a preference for this never encountered food. The efficient discrimination of odorants is performed by olfactory sensory neurons (OSNs). It is essential and supports many of the decision-making processes. Here, we found that the olfactory marker protein (OMP), an enigmatic protein ubiquitously expressed in all mature olfactory neurons, is involved in the fine regulation of OSNs basal activity that directly impacts the odorant discrimination ability. Using a previously described Omp null mouse model, we noticed that although odorants and their hedonic-associated values were still perceived by these mice, compensatory behaviors such as a higher number of sniffing events were displayed both in the discrimination of complex odorant signatures and in social-related contexts. As a consequence, we found that the ability to differentiate the olfactory messages carried by individuals such as those implicated in the social transmission of food preference were significantly compromised in Omp null mice. Thus, our results not only give new insights into the role of OMP in the fine discrimination of odorants but also reinforce the fundamental implication of a functional olfactory system for food decision-making.
Collapse
|
7
|
Braga-Paz I, Ferreira de Araújo JL, Alves HJ, de Ávila RE, Resende GG, Teixeira MM, de Aguiar RS, de Souza RP, Bahia D. Negative correlation between ACE2 gene expression levels and loss of taste in a cohort of COVID-19 hospitalized patients: New clues to long-term cognitive disorders. Front Cell Infect Microbiol 2022; 12:905757. [PMID: 36250059 PMCID: PMC9556632 DOI: 10.3389/fcimb.2022.905757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In early 2020, one of the most prevalent symptoms of SARS-CoV-2 infection was the loss of smell (anosmia), found in 60-70% of all cases. Anosmia used to occur early, concomitantly with other symptoms, and often persisted after recovery for an extended period, sometimes for months. In addition to smell disturbance, COVID-19 has also been associated with loss of taste (ageusia). The latest research suggests that SARS-CoV-2 could spread from the respiratory system to the brain through receptors in sustentacular cells localized to the olfactory epithelium. The virus invades human cells via the obligatory receptor, angiotensin-converting enzyme II (ACE2), and a priming protease, TMPRSS2, facilitating viral penetration. There is an abundant expression of both ACE2 and TMPRSS2 in sustentacular cells. In this study, we evaluated 102 COVID-19 hospitalized patients, of which 17.60% presented anosmia and 9.80% ageusia. ACE1, ACE2, and TMPRSS2 gene expression levels in nasopharyngeal tissue were obtained by RT-qPCR and measured using ΔCT analysis. ACE1 Alu287bp association was also evaluated. Logistic regression models were generated to estimate the effects of variables on ageusia and anosmia Association of ACE2 expression levels with ageusia. was observed (OR: 1.35; 95% CI: 1.098-1.775); however, no association was observed between TMPRSS2 and ACE1 expression levels and ageusia. No association was observed among the three genes and anosmia, and the Alu287bp polymorphism was not associated with any of the outcomes. Lastly, we discuss whetherthere is a bridge linking these initial symptoms, including molecular factors, to long-term COVID-19 health consequences such as cognitive dysfunctions.
Collapse
Affiliation(s)
- Isabela Braga-Paz
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - João Locke Ferreira de Araújo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Hugo José Alves
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Gustavo Gomes Resende
- Hospital das Clínicas, Universidade Federal de Minas Gerais (HC-UFMG/EBSERH), Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquimica e imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Renato Santana de Aguiar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Instituto D’Or de Pesquisa e Ensino, Instituto D'OR (IDOR), Rio de Janeiro, Brazil
| | - Renan Pedra de Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- *Correspondence: Renan Pedra de Souza, ; Diana Bahia,
| | - Diana Bahia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- *Correspondence: Renan Pedra de Souza, ; Diana Bahia,
| |
Collapse
|
8
|
Park JW, Wang X, Xu RH. Revealing the mystery of persistent smell loss in Long COVID patients. Int J Biol Sci 2022; 18:4795-4808. [PMID: 35874953 PMCID: PMC9305264 DOI: 10.7150/ijbs.73485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
COVID-19 is hopefully approaching its end in many countries as herd immunity develops and weaker strains of SARS-CoV-2 dominate. However, a new concern occurs over the long-term effects of COVID-19, collectively called "Long COVID", as some symptoms of the nervous system last even after patients recover from COVID-19. This review focuses on studies of anosmia, i.e., impairment of smell, which is the most common sensory defect during the disease course and is caused by olfactory dysfunctions. It remains mysterious how the olfactory functions are affected since the virus can't invade olfactory receptor neurons. We describe several leading hypotheses about the mystery in hope to provide insights into the pathophysiology and treatment strategies for anosmia.
Collapse
Affiliation(s)
- Jung Woo Park
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Xiaoyan Wang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| |
Collapse
|
9
|
Hao M, Wang D, Xia Q, Kan S, Chang L, Liu H, Yang Z, Liu W. Pathogenic Mechanism and Multi-omics Analysis of Oral Manifestations in COVID-19. Front Immunol 2022; 13:879792. [PMID: 35860279 PMCID: PMC9290522 DOI: 10.3389/fimmu.2022.879792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease that seriously threatens human life. The clinical manifestations of severe COVID-19 include acute respiratory distress syndrome and multiple organ failure. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, spreads through contaminated droplets. SARS-CoV-2 particles have been detected in the saliva of COVID-19 patients, implying that the virus can infect and damage the oral cavity. The oral manifestations of COVID-19 include xerostomia and gustatory dysfunction. Numerous studies showed that the four structural proteins of SARS-CoV-2 are its potential pathogenic factors, especially the S protein, which binds to human ACE2 receptors facilitating the entry of the virus into the host cells. Usually, upon entry into the host cell, a pathogen triggers the host’s immune response. However, a mount of multi-omics and immunological analyses revealed that COVID-19 is caused by immune dysregulation. A decrease in the number and phenotypes of immune cells, IFN-1 production and excessive release of certain cytokines have also been reported. In conclusion, this review summarizes the oral manifestations of COVID-19 and multi-omics analysis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qianyun Xia
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Weiwei Liu,
| |
Collapse
|
10
|
Ozdener MH, Mahavadi S, Mummalaneni S, Lyall V. Relationship between ENaC Regulators and SARS-CoV-2 Virus Receptor (ACE2) Expression in Cultured Adult Human Fungiform (HBO) Taste Cells. Nutrients 2022; 14:2703. [PMID: 35807883 PMCID: PMC9268489 DOI: 10.3390/nu14132703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
In addition to the α, β, and γ subunits of ENaC, human salt-sensing taste receptor cells (TRCs) also express the δ-subunit. At present, it is not clear if the expression and function of the ENaC δ-subunit in human salt-sensing TRCs is also modulated by the ENaC regulatory hormones and intracellular signaling effectors known to modulate salt responses in rodent TRCs. Here, we used molecular techniques to demonstrate that the G-protein-coupled estrogen receptor (GPER1), the transient receptor potential cation channel subfamily V member 1 (TRPV1), and components of the renin-angiotensin-aldosterone system (RAAS) are expressed in δ-ENaC-positive cultured adult human fungiform (HBO) taste cells. Our results suggest that RAAS components function in a complex with ENaC and TRPV1 to modulate salt sensing and thus salt intake in humans. Early, but often prolonged, symptoms of COVID-19 infection are the loss of taste, smell, and chemesthesis. The SARS-CoV-2 spike protein contains two subunits, S1 and S2. S1 contains a receptor-binding domain, which is responsible for recognizing and binding to the ACE2 receptor, a component of RAAS. Our results show that the binding of a mutated S1 protein to ACE2 decreases ACE2 expression in HBO cells. We hypothesize that changes in ACE2 receptor expression can alter the balance between the two major RAAS pathways, ACE1/Ang II/AT1R and ACE2/Ang-(1-7)/MASR1, leading to changes in ENaC expression and responses to NaCl in salt-sensing human fungiform taste cells.
Collapse
Affiliation(s)
| | - Sunila Mahavadi
- Department of Biology, Center for Biomedical Research, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
11
|
Bilinska K, von Bartheld CS, Butowt R. Expression of the ACE2 Virus Entry Protein in the Nervus Terminalis Reveals the Potential for an Alternative Route to Brain Infection in COVID-19. Front Cell Neurosci 2021; 15:674123. [PMID: 34290590 PMCID: PMC8287262 DOI: 10.3389/fncel.2021.674123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Previous studies suggested that the SARS-CoV-2 virus may gain access to the brain by using a route along the olfactory nerve. However, there is a general consensus that the obligatory virus entry receptor, angiotensin converting enzyme 2 (ACE2), is not expressed in olfactory receptor neurons, and the timing of arrival of the virus in brain targets is inconsistent with a neuronal transfer along olfactory projections. We determined whether nervus terminalis neurons and their peripheral and central projections should be considered as a potential alternative route from the nose to the brain. Nervus terminalis neurons in postnatal mice were double-labeled with antibodies against ACE2 and two nervus terminalis markers, gonadotropin-releasing hormone (GnRH) and choline acetyltransferase (CHAT). We show that a small fraction of CHAT-labeled nervus terminalis neurons, and the large majority of GnRH-labeled nervus terminalis neurons with cell bodies in the region between the olfactory epithelium and the olfactory bulb express ACE2 and cathepsins B and L. Nervus terminalis neurons therefore may provide a direct route for the virus from the nasal epithelium, possibly via innervation of Bowman's glands, to brain targets, including the telencephalon and diencephalon. This possibility needs to be examined in suitable animal models and in human tissues.
Collapse
Affiliation(s)
- Katarzyna Bilinska
- L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Christopher S. von Bartheld
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Rafal Butowt
- L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|