1
|
Meulmeester FL, van Dijk KW, van Heemst D, Noordam R. Association of a composite trait for anthropometrics, adiposity and energy expenditure with cardiometabolic diseases: An age-stratified cohort and genetic risk score analysis. Diabetes Obes Metab 2024; 26:5922-5930. [PMID: 39355936 DOI: 10.1111/dom.15966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024]
Abstract
AIM Various anthropometric measures capture distinct as well as overlapping characteristics of an individual's body composition. To characterize independent body composition measures, we aimed to reduce easily-obtainable individual measures reflecting adiposity, anthropometrics and energy expenditure into fewer independent constructs, and to assess their potential sex- and age-specific relation with cardiometabolic diseases. METHODS Analyses were performed within European ancestry participants from UK Biobank (N = 418,963, mean age 58.0 years, 56% women). Principal components (PC) analyses were used for the dimension reduction of 11 measures of adiposity, anthropometrics and energy expenditure. PCs were studied in relation to incident type 2 diabetes mellitus (T2D) and coronary artery disease (CAD). Multivariable-adjusted Cox regression analyses, adjusted for confounding factors, were performed in all and stratified by age. Genome-wide association studies were performed in half of the cohort (N = 156,295) to identify genetic variants as instrumental variables. Genetic risk score analyses were performed in the other half of the cohort stratified by age of disease onset (N = 156,295). RESULTS We identified two PCs, of which PC1 reflected lower overall adiposity (negatively correlated with all adiposity aspects) and PC2 reflected more central adiposity (mainly correlated with higher waist-hip ratio, but with lower total body fat) and increased height, collectively capturing 87.8% of the total variance. Similar to that observed in the multivariable-adjusted regression analyses, we found associations between the PC1 genetic risk score and lower risks of CAD and T2D [CAD cases <50 years, odds ratio: 0.91 (95% confidence interval 0.87, 0.94) per SD; T2D cases <50 years, odds ratio: 0.76 (0.72, 0.81)], which attenuated with higher age (p-values 8.13E-4 and 2.41E-6, respectively). No associations were found for PC2. CONCLUSIONS The consistently observed weaker associations of the composite traits with cardiometabolic disease suggests the need for age-specific cardiometabolic disease prevention strategies.
Collapse
Affiliation(s)
- Fleur L Meulmeester
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Moix S, Sadler MC, Kutalik Z, Auwerx C. Breaking down causes, consequences, and mediating effects of telomere length variation on human health. Genome Biol 2024; 25:125. [PMID: 38760657 PMCID: PMC11101352 DOI: 10.1186/s13059-024-03269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Telomeres form repeated DNA sequences at the ends of chromosomes, which shorten with each cell division. Yet, factors modulating telomere attrition and the health consequences thereof are not fully understood. To address this, we leveraged data from 326,363 unrelated UK Biobank participants of European ancestry. RESULTS Using linear regression and bidirectional univariable and multivariable Mendelian randomization (MR), we elucidate the relationships between leukocyte telomere length (LTL) and 142 complex traits, including diseases, biomarkers, and lifestyle factors. We confirm that telomeres shorten with age and show a stronger decline in males than in females, with these factors contributing to the majority of the 5.4% of LTL variance explained by the phenome. MR reveals 23 traits modulating LTL. Smoking cessation and high educational attainment associate with longer LTL, while weekly alcohol intake, body mass index, urate levels, and female reproductive events, such as childbirth, associate with shorter LTL. We also identify 24 traits affected by LTL, with risk for cardiovascular, pulmonary, and some autoimmune diseases being increased by short LTL, while longer LTL increased risk for other autoimmune conditions and cancers. Through multivariable MR, we show that LTL may partially mediate the impact of educational attainment, body mass index, and female age at childbirth on proxied lifespan. CONCLUSIONS Our study sheds light on the modulators, consequences, and the mediatory role of telomeres, portraying an intricate relationship between LTL, diseases, lifestyle, and socio-economic factors.
Collapse
Affiliation(s)
- Samuel Moix
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| | - Marie C Sadler
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland.
| | - Chiara Auwerx
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland.
- Center for Integrative Genetics, UNIL, Lausanne, 1015, Switzerland.
| |
Collapse
|
3
|
Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, Mandla R, Huerta-Chagoya A, Melloni GEM, Kanoni S, Rayner NW, Bocher O, Arruda AL, Sonehara K, Namba S, Lee SSK, Preuss MH, Petty LE, Schroeder P, Vanderwerff B, Kals M, Bragg F, Lin K, Guo X, Zhang W, Yao J, Kim YJ, Graff M, Takeuchi F, Nano J, Lamri A, Nakatochi M, Moon S, Scott RA, Cook JP, Lee JJ, Pan I, Taliun D, Parra EJ, Chai JF, Bielak LF, Tabara Y, Hai Y, Thorleifsson G, Grarup N, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Kwak SH, Long J, Sun M, Tong L, Chen WM, Nongmaithem SS, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen CH, Raffield LM, Prins BP, Nicolas A, Yanek LR, Chen G, Brody JA, Kabagambe E, An P, Xiang AH, Choi HS, Cade BE, Tan J, Broadaway KA, Williamson A, Kamali Z, Cui J, Thangam M, Adair LS, Adeyemo A, Aguilar-Salinas CA, Ahluwalia TS, Anand SS, Bertoni A, Bork-Jensen J, Brandslund I, Buchanan TA, Burant CF, Butterworth AS, Canouil M, Chan JCN, Chang LC, Chee ML, Chen J, Chen SH, Chen YT, Chen Z, Chuang LM, Cushman M, et alSuzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, Mandla R, Huerta-Chagoya A, Melloni GEM, Kanoni S, Rayner NW, Bocher O, Arruda AL, Sonehara K, Namba S, Lee SSK, Preuss MH, Petty LE, Schroeder P, Vanderwerff B, Kals M, Bragg F, Lin K, Guo X, Zhang W, Yao J, Kim YJ, Graff M, Takeuchi F, Nano J, Lamri A, Nakatochi M, Moon S, Scott RA, Cook JP, Lee JJ, Pan I, Taliun D, Parra EJ, Chai JF, Bielak LF, Tabara Y, Hai Y, Thorleifsson G, Grarup N, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Kwak SH, Long J, Sun M, Tong L, Chen WM, Nongmaithem SS, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen CH, Raffield LM, Prins BP, Nicolas A, Yanek LR, Chen G, Brody JA, Kabagambe E, An P, Xiang AH, Choi HS, Cade BE, Tan J, Broadaway KA, Williamson A, Kamali Z, Cui J, Thangam M, Adair LS, Adeyemo A, Aguilar-Salinas CA, Ahluwalia TS, Anand SS, Bertoni A, Bork-Jensen J, Brandslund I, Buchanan TA, Burant CF, Butterworth AS, Canouil M, Chan JCN, Chang LC, Chee ML, Chen J, Chen SH, Chen YT, Chen Z, Chuang LM, Cushman M, Danesh J, Das SK, de Silva HJ, Dedoussis G, Dimitrov L, Doumatey AP, Du S, Duan Q, Eckardt KU, Emery LS, Evans DS, Evans MK, Fischer K, Floyd JS, Ford I, Franco OH, Frayling TM, Freedman BI, Genter P, Gerstein HC, Giedraitis V, González-Villalpando C, González-Villalpando ME, Gordon-Larsen P, Gross M, Guare LA, Hackinger S, Hakaste L, Han S, Hattersley AT, Herder C, Horikoshi M, Howard AG, Hsueh W, Huang M, Huang W, Hung YJ, Hwang MY, Hwu CM, Ichihara S, Ikram MA, Ingelsson M, Islam MT, Isono M, Jang HM, Jasmine F, Jiang G, Jonas JB, Jørgensen T, Kamanu FK, Kandeel FR, Kasturiratne A, Katsuya T, Kaur V, Kawaguchi T, Keaton JM, Kho AN, Khor CC, Kibriya MG, Kim DH, Kronenberg F, Kuusisto J, Läll K, Lange LA, Lee KM, Lee MS, Lee NR, Leong A, Li L, Li Y, Li-Gao R, Ligthart S, Lindgren CM, Linneberg A, Liu CT, Liu J, Locke AE, Louie T, Luan J, Luk AO, Luo X, Lv J, Lynch JA, Lyssenko V, Maeda S, Mamakou V, Mansuri SR, Matsuda K, Meitinger T, Melander O, Metspalu A, Mo H, Morris AD, Moura FA, Nadler JL, Nalls MA, Nayak U, Ntalla I, Okada Y, Orozco L, Patel SR, Patil S, Pei P, Pereira MA, Peters A, Pirie FJ, Polikowsky HG, Porneala B, Prasad G, Rasmussen-Torvik LJ, Reiner AP, Roden M, Rohde R, Roll K, Sabanayagam C, Sandow K, Sankareswaran A, Sattar N, Schönherr S, Shahriar M, Shen B, Shi J, Shin DM, Shojima N, Smith JA, So WY, Stančáková A, Steinthorsdottir V, Stilp AM, Strauch K, Taylor KD, Thorand B, Thorsteinsdottir U, Tomlinson B, Tran TC, Tsai FJ, Tuomilehto J, Tusie-Luna T, Udler MS, Valladares-Salgado A, van Dam RM, van Klinken JB, Varma R, Wacher-Rodarte N, Wheeler E, Wickremasinghe AR, van Dijk KW, Witte DR, Yajnik CS, Yamamoto K, Yamamoto K, Yoon K, Yu C, Yuan JM, Yusuf S, Zawistowski M, Zhang L, Zheng W, Raffel LJ, Igase M, Ipp E, Redline S, Cho YS, Lind L, Province MA, Fornage M, Hanis CL, Ingelsson E, Zonderman AB, Psaty BM, Wang YX, Rotimi CN, Becker DM, Matsuda F, Liu Y, Yokota M, Kardia SLR, Peyser PA, Pankow JS, Engert JC, Bonnefond A, Froguel P, Wilson JG, Sheu WHH, Wu JY, Hayes MG, Ma RCW, Wong TY, Mook-Kanamori DO, Tuomi T, Chandak GR, Collins FS, Bharadwaj D, Paré G, Sale MM, Ahsan H, Motala AA, Shu XO, Park KS, Jukema JW, Cruz M, Chen YDI, Rich SS, McKean-Cowdin R, Grallert H, Cheng CY, Ghanbari M, Tai ES, Dupuis J, Kato N, Laakso M, Köttgen A, Koh WP, Bowden DW, Palmer CNA, Kooner JS, Kooperberg C, Liu S, North KE, Saleheen D, Hansen T, Pedersen O, Wareham NJ, Lee J, Kim BJ, Millwood IY, Walters RG, Stefansson K, Ahlqvist E, Goodarzi MO, Mohlke KL, Langenberg C, Haiman CA, Loos RJF, Florez JC, Rader DJ, Ritchie MD, Zöllner S, Mägi R, Marston NA, Ruff CT, van Heel DA, Finer S, Denny JC, Yamauchi T, Kadowaki T, Chambers JC, Ng MCY, Sim X, Below JE, Tsao PS, Chang KM, McCarthy MI, Meigs JB, Mahajan A, Spracklen CN, Mercader JM, Boehnke M, Rotter JI, Vujkovic M, Voight BF, Morris AP, Zeggini E. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 2024; 627:347-357. [PMID: 38374256 PMCID: PMC10937372 DOI: 10.1038/s41586-024-07019-6] [Show More Authors] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024]
Abstract
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.
Collapse
Affiliation(s)
- Ken Suzuki
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Henry J Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Xianyong Yin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kim M Lorenz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ravi Mandla
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alicia Huerta-Chagoya
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Giorgio E M Melloni
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nigel W Rayner
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ozvan Bocher
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ana Luiza Arruda
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Graduate School of Experimental Medicine, Technical University of Munich, Munich, Germany
- Munich School for Data Science, Helmholtz Munich, Neuherberg, Germany
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Simon S K Lee
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E Petty
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip Schroeder
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brett Vanderwerff
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fiona Bragg
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London NorthWest Healthcare NHS Trust, London, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Amel Lamri
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sanghoon Moon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Jung-Jin Lee
- Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Pan
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Daniel Taliun
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yang Hai
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamar Sofer
- Department of Biostatistics, Harvard University, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard University, Boston, MA, USA
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Chloé Sarnowski
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Darryl Nousome
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Soo-Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meng Sun
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Lin Tong
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Wei-Min Chen
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Suraj S Nongmaithem
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Victor J Y Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Yoonjung Yoonie Joo
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bram Peter Prins
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Aude Nicolas
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Edmond Kabagambe
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Academics, Ochsner Health, New Orleans, LA, USA
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Anny H Xiang
- Department of Research and Evaluation, Division of Biostatistics Research, Kaiser Permanente of Southern California, Pasadena, CA, USA
| | - Hyeok Sun Choi
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jingyi Tan
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alice Williamson
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jinrui Cui
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Manonanthini Thangam
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sonia S Anand
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
| | - Thomas A Buchanan
- Department of Medicine, Division of Endocrinology and Diabetes, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus, University of Cambridge, Hinxton, UK
- National Institute for Health and Care Research (NIHR) Blood and Transplant Unit (BTRU) in Donor Health and Behaviour, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Mickaël Canouil
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, Chinese University of Hong Kong, Hong Kong, China
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ji Chen
- Exeter Centre of Excellence in Diabetes (ExCEeD), Exeter Medical School, University of Exeter, Exeter, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shyh-Huei Chen
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Lee-Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Mary Cushman
- Department of Medicine, University of Vermont, Colchester, VT, USA
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus, University of Cambridge, Hinxton, UK
- National Institute for Health and Care Research (NIHR) Blood and Transplant Unit (BTRU) in Donor Health and Behaviour, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Swapan K Das
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Pauline Genter
- Department of Medicine, Division of Endocrinology and Metabolism, Lundquist Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hertzel C Gerstein
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Clicerio González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Maria Elena González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lindsay A Guare
- Genomics and Computational Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sophie Hackinger
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Liisa Hakaste
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | | | - Christian Herder
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Annie-Green Howard
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Willa Hsueh
- Department of Internal Medicine, Diabetes and Metabolism Research Center, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mengna Huang
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hye-Mi Jang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Jost B Jonas
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Frederick K Kamanu
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fouad R Kandeel
- Department of Clinical Diabetes, Endocrinology and Metabolism, Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | | | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Varinderpal Kaur
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacob M Keaton
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Abel N Kho
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Health Information Partnerships, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Muhammad G Kibriya
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kyung Min Lee
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Myung-Shik Lee
- Soochunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soochunhyang University College of Medicine, Cheonan, South Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
| | - Aaron Leong
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Symen Ligthart
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Cecilia M Lindgren
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Adam E Locke
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Division of Genomics and Bioinformatics, Washington University School of Medicine, St Louis, MO, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Andrea O Luk
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Xi Luo
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Shiro Maeda
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan
| | - Vasiliki Mamakou
- Dromokaiteio Psychiatric Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sohail Rafik Mansuri
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Koichi Matsuda
- Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Olle Melander
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Huan Mo
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D Morris
- Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Filipe A Moura
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerry L Nadler
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Uma Nayak
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Sanjay R Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Snehal Patil
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fraser J Pirie
- Department of Diabetes and Endocrinology, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hannah G Polikowsky
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bianca Porneala
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gauri Prasad
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Campus, Ghaziabad, India
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katheryn Roll
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Kevin Sandow
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alagu Sankareswaran
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohammad Shahriar
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jinxiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Dong Mun Shin
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wing Yee So
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, Chinese University of Hong Kong, Hong Kong, China
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Biostatistics, Epidemiology, and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Chair of Genetic Epidemiology, Institute of Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Tam C Tran
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fuu-Jen Tsai
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jaakko Tuomilehto
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- National School of Public Health, Madrid, Spain
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Departamento de Medicina Genómica y Toxiología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Miriam S Udler
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adan Valladares-Salgado
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jan B van Klinken
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Chemistry, Laboratory of Genetic Metabolic Disease, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rohit Varma
- Southern California Eye Institute, CHA Hollywood Presbyterian Hospital, Los Angeles, CA, USA
| | - Niels Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Ko Willems van Dijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Chittaranjan S Yajnik
- Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Salim Yusuf
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Liang Zhang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leslie J Raffel
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UCI Irvine School of Medicine, Irvine, CA, USA
| | - Michiya Igase
- Department of Anti-Aging Medicine, Ehime University Graduate School of Medicine, Touon, Japan
| | - Eli Ipp
- Department of Medicine, Division of Endocrinology and Metabolism, Lundquist Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael A Province
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Craig L Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Erik Ingelsson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James C Engert
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amélie Bonnefond
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wayne H H Sheu
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, Chinese University of Hong Kong, Hong Kong, China
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tiinamaija Tuomi
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Department of Endocrinology, Helsinki University Hospital, Helsinki, Finland
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- Science and Engineering Research Board (SERB), Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Guillaume Paré
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michèle M Sale
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Ayesha A Motala
- Department of Diabetes and Endocrinology, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyong-Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Roberta McKean-Cowdin
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Josee Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Woon-Puay Koh
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, University of Dundee, Dundee, UK
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London NorthWest Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Simin Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
- Department of Medicine, Brown University Alpert School of Medicine, Providence, RI, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danish Saleheen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Juyoung Lee
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kari Stefansson
- deCODE Genetics, Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Mark O Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Translational Medicine and Therapeutics, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Precision Medicine, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Nicholas A Marston
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sarah Finer
- Institute for Population Health Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joshua C Denny
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London NorthWest Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Maggie C Y Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jennifer E Below
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip S Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - James B Meigs
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Josep M Mercader
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK.
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany.
| |
Collapse
|
4
|
Yang A, Yang YT, Zhao XM. An augmented Mendelian randomization approach provides causality of brain imaging features on complex traits in a single biobank-scale dataset. PLoS Genet 2023; 19:e1011112. [PMID: 38150468 PMCID: PMC10775988 DOI: 10.1371/journal.pgen.1011112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/09/2024] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Mendelian randomization (MR) is an effective approach for revealing causal risk factors that underpin complex traits and diseases. While MR has been more widely applied under two-sample settings, it is more promising to be used in one single large cohort given the rise of biobank-scale datasets that simultaneously contain genotype data, brain imaging data, and matched complex traits from the same individual. However, most existing multivariable MR methods have been developed for two-sample setting or a small number of exposures. In this study, we introduce a one-sample multivariable MR method based on partial least squares and Lasso regression (MR-PL). MR-PL is capable of considering the correlation among exposures (e.g., brain imaging features) when the number of exposures is extremely upscaled, while also correcting for winner's curse bias. We performed extensive and systematic simulations, and demonstrated the robustness and reliability of our method. Comprehensive simulations confirmed that MR-PL can generate more precise causal estimates with lower false positive rates than alternative approaches. Finally, we applied MR-PL to the datasets from UK Biobank to reveal the causal effects of 36 white matter tracts on 180 complex traits, and showed putative white matter tracts that are implicated in smoking, blood vascular function-related traits, and eating behaviors.
Collapse
Affiliation(s)
- Anyi Yang
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People’s Republic of China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People’s Republic of China
| | - Yucheng T. Yang
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People’s Republic of China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People’s Republic of China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People’s Republic of China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People’s Republic of China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, People’s Republic of China
- International Human Phenome Institutes (Shanghai), Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Liu D, Gan Y, Zhang Y, Cui L, Tao T, Zhang J, Zhao J. Fetal genome predicted birth weight and polycystic ovary syndrome in later life: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1140499. [PMID: 37351103 PMCID: PMC10282929 DOI: 10.3389/fendo.2023.1140499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Associations between lower birth weight and higher polycystic ovary syndrome (PCOS) risk have been reported in previous observational studies, however, the causal relationship is still unknown. Based on decomposed fetal and maternal genetic effects on birth weight (n = 406,063), we conducted a two-sample Mendelian randomization (MR) analysis to assess potential causal relationships between fetal genome predicted birth weight and PCOS risk using a large-scale genome-wide association study (GWAS) including 4,138 PCOS cases and 20,129 controls. To further eliminate the maternally transmitted or non-transmitted effects on fetal growth, we performed a secondary MR analysis by utilizing genetic instruments after excluding maternally transmitted or non-transmitted variants, which were identified in another birth weight GWAS (n = 63,365 parent-offspring trios from Icelandic birth register). Linkage disequilibrium score regression (LDSR) analysis was conducted to estimate the genetic correlation. We found little evidence to support a causal effect of fetal genome determined birth weight on the risk of developing PCOS (primary MR analysis, OR: 0.86, 95% CI: 0.52 to 1.43; secondary MR analysis, OR: 0.86, 95% CI: 0.54 to 1.39). In addition, a marginally significant genetic correlation (rg = -0.14, se = 0.07) between birth weight and PCOS was revealed via LDSR analysis. Our findings indicated that observed associations between birth weight and future PCOS risk are more likely to be attributable to genetic pleiotropy driven by the fetal genome rather than a causal mechanism.
Collapse
Affiliation(s)
- Dong Liu
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Cui
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Tao Tao
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Zhao
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Karageorgiou V, Gill D, Bowden J, Zuber V. Sparse dimensionality reduction approaches in Mendelian randomisation with highly correlated exposures. eLife 2023; 12:e80063. [PMID: 37074034 PMCID: PMC10229118 DOI: 10.7554/elife.80063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
Multivariable Mendelian randomisation (MVMR) is an instrumental variable technique that generalises the MR framework for multiple exposures. Framed as a regression problem, it is subject to the pitfall of multicollinearity. The bias and efficiency of MVMR estimates thus depends heavily on the correlation of exposures. Dimensionality reduction techniques such as principal component analysis (PCA) provide transformations of all the included variables that are effectively uncorrelated. We propose the use of sparse PCA (sPCA) algorithms that create principal components of subsets of the exposures with the aim of providing more interpretable and reliable MR estimates. The approach consists of three steps. We first apply a sparse dimension reduction method and transform the variant-exposure summary statistics to principal components. We then choose a subset of the principal components based on data-driven cutoffs, and estimate their strength as instruments with an adjusted F-statistic. Finally, we perform MR with these transformed exposures. This pipeline is demonstrated in a simulation study of highly correlated exposures and an applied example using summary data from a genome-wide association study of 97 highly correlated lipid metabolites. As a positive control, we tested the causal associations of the transformed exposures on coronary heart disease (CHD). Compared to the conventional inverse-variance weighted MVMR method and a weak instrument robust MVMR method (MR GRAPPLE), sparse component analysis achieved a superior balance of sparsity and biologically insightful grouping of the lipid traits.
Collapse
Affiliation(s)
- Vasileios Karageorgiou
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
- University of ExeterExeterUnited Kingdom
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
- Department of Clinical Pharmacology and Therapeutics, Institute for Infection and Immunity, St George’s, University of LondonLondonUnited Kingdom
- Genetics Department, Novo Nordisk Research Centre OxfordOxfordUnited Kingdom
| | - Jack Bowden
- University of ExeterExeterUnited Kingdom
- Genetics Department, Novo Nordisk Research Centre OxfordOxfordUnited Kingdom
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, Mandla R, Huerta-Chagoya A, Rayner NW, Bocher O, Arruda ALDSV, Sonehara K, Namba S, Lee SSK, Preuss MH, Petty LE, Schroeder P, Vanderwerff B, Kals M, Bragg F, Lin K, Guo X, Zhang W, Yao J, Kim YJ, Graff M, Takeuchi F, Nano J, Lamri A, Nakatochi M, Moon S, Scott RA, Cook JP, Lee JJ, Pan I, Taliun D, Parra EJ, Chai JF, Bielak LF, Tabara Y, Hai Y, Thorleifsson G, Grarup N, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Kwak SH, Long J, Sun M, Tong L, Chen WM, Nongmaithem SS, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen CH, Raffield LM, Prins BP, Nicolas A, Yanek LR, Chen G, Brody JA, Kabagambe E, An P, Xiang AH, Choi HS, Cade BE, Tan J, Broadaway KA, Williamson A, Kamali Z, Cui J, Adair LS, Adeyemo A, Aguilar-Salinas CA, Ahluwalia TS, Anand SS, Bertoni A, Bork-Jensen J, Brandslund I, Buchanan TA, Burant CF, Butterworth AS, Canouil M, Chan JCN, Chang LC, Chee ML, Chen J, Chen SH, Chen YT, Chen Z, Chuang LM, Cushman M, Danesh J, Das SK, de Silva HJ, et alSuzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, Mandla R, Huerta-Chagoya A, Rayner NW, Bocher O, Arruda ALDSV, Sonehara K, Namba S, Lee SSK, Preuss MH, Petty LE, Schroeder P, Vanderwerff B, Kals M, Bragg F, Lin K, Guo X, Zhang W, Yao J, Kim YJ, Graff M, Takeuchi F, Nano J, Lamri A, Nakatochi M, Moon S, Scott RA, Cook JP, Lee JJ, Pan I, Taliun D, Parra EJ, Chai JF, Bielak LF, Tabara Y, Hai Y, Thorleifsson G, Grarup N, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Kwak SH, Long J, Sun M, Tong L, Chen WM, Nongmaithem SS, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen CH, Raffield LM, Prins BP, Nicolas A, Yanek LR, Chen G, Brody JA, Kabagambe E, An P, Xiang AH, Choi HS, Cade BE, Tan J, Broadaway KA, Williamson A, Kamali Z, Cui J, Adair LS, Adeyemo A, Aguilar-Salinas CA, Ahluwalia TS, Anand SS, Bertoni A, Bork-Jensen J, Brandslund I, Buchanan TA, Burant CF, Butterworth AS, Canouil M, Chan JCN, Chang LC, Chee ML, Chen J, Chen SH, Chen YT, Chen Z, Chuang LM, Cushman M, Danesh J, Das SK, de Silva HJ, Dedoussis G, Dimitrov L, Doumatey AP, Du S, Duan Q, Eckardt KU, Emery LS, Evans DS, Evans MK, Fischer K, Floyd JS, Ford I, Franco OH, Frayling TM, Freedman BI, Genter P, Gerstein HC, Giedraitis V, González-Villalpando C, González-Villalpando ME, Gordon-Larsen P, Gross M, Guare LA, Hackinger S, Han S, Hattersley AT, Herder C, Horikoshi M, Howard AG, Hsueh W, Huang M, Huang W, Hung YJ, Hwang MY, Hwu CM, Ichihara S, Ikram MA, Ingelsson M, Islam MT, Isono M, Jang HM, Jasmine F, Jiang G, Jonas JB, Jørgensen T, Kandeel FR, Kasturiratne A, Katsuya T, Kaur V, Kawaguchi T, Keaton JM, Kho AN, Khor CC, Kibriya MG, Kim DH, Kronenberg F, Kuusisto J, Läll K, Lange LA, Lee KM, Lee MS, Lee NR, Leong A, Li L, Li Y, Li-Gao R, Lithgart S, Lindgren CM, Linneberg A, Liu CT, Liu J, Locke AE, Louie T, Luan J, Luk AO, Luo X, Lv J, Lynch JA, Lyssenko V, Maeda S, Mamakou V, Mansuri SR, Matsuda K, Meitinger T, Metspalu A, Mo H, Morris AD, Nadler JL, Nalls MA, Nayak U, Ntalla I, Okada Y, Orozco L, Patel SR, Patil S, Pei P, Pereira MA, Peters A, Pirie FJ, Polikowsky HG, Porneala B, Prasad G, Rasmussen-Torvik LJ, Reiner AP, Roden M, Rohde R, Roll K, Sabanayagam C, Sandow K, Sankareswaran A, Sattar N, Schönherr S, Shahriar M, Shen B, Shi J, Shin DM, Shojima N, Smith JA, So WY, Stančáková A, Steinthorsdottir V, Stilp AM, Strauch K, Taylor KD, Thorand B, Thorsteinsdottir U, Tomlinson B, Tran TC, Tsai FJ, Tuomilehto J, Tusie-Luna T, Udler MS, Valladares-Salgado A, van Dam RM, van Klinken JB, Varma R, Wacher-Rodarte N, Wheeler E, Wickremasinghe AR, van Dijk KW, Witte DR, Yajnik CS, Yamamoto K, Yamamoto K, Yoon K, Yu C, Yuan JM, Yusuf S, Zawistowski M, Zhang L, Zheng W, Raffel LJ, Igase M, Ipp E, Redline S, Cho YS, Lind L, Province MA, Fornage M, Hanis CL, Ingelsson E, Zonderman AB, Psaty BM, Wang YX, Rotimi CN, Becker DM, Matsuda F, Liu Y, Yokota M, Kardia SLR, Peyser PA, Pankow JS, Engert JC, Bonnefond A, Froguel P, Wilson JG, Sheu WHH, Wu JY, Hayes MG, Ma RCW, Wong TY, Mook-Kanamori DO, Tuomi T, Chandak GR, Collins FS, Bharadwaj D, Paré G, Sale MM, Ahsan H, Motala AA, Shu XO, Park KS, Jukema JW, Cruz M, Chen YDI, Rich SS, McKean-Cowdin R, Grallert H, Cheng CY, Ghanbari M, Tai ES, Dupuis J, Kato N, Laakso M, Köttgen A, Koh WP, Bowden DW, Palmer CNA, Kooner JS, Kooperberg C, Liu S, North KE, Saleheen D, Hansen T, Pedersen O, Wareham NJ, Lee J, Kim BJ, Millwood IY, Walters RG, Stefansson K, Goodarzi MO, Mohlke KL, Langenberg C, Haiman CA, Loos RJF, Florez JC, Rader DJ, Ritchie MD, Zöllner S, Mägi R, Denny JC, Yamauchi T, Kadowaki T, Chambers JC, Ng MCY, Sim X, Below JE, Tsao PS, Chang KM, McCarthy MI, Meigs JB, Mahajan A, Spracklen CN, Mercader JM, Boehnke M, Rotter JI, Vujkovic M, Voight BF, Morris AP, Zeggini E. Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.31.23287839. [PMID: 37034649 PMCID: PMC10081410 DOI: 10.1101/2023.03.31.23287839] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.
Collapse
Affiliation(s)
- Ken Suzuki
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Henry J. Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing City, China
| | - Kim M. Lorenz
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ravi Mandla
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alicia Huerta-Chagoya
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nigel W. Rayner
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ozvan Bocher
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ana Luiza de S. V. Arruda
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Simon S. K. Lee
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H. Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E. Petty
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip Schroeder
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brett Vanderwerff
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fiona Bragg
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hosptial, London NorthWest Healthcare NHS Trust, Middlesex, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sanghoon Moon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - James P. Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Jung-Jin Lee
- Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Pan
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Daniel Taliun
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto at Mississsauga, Mississauga, ON, Canada
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yang Hai
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamar Sofer
- Department of Biostatistics, Harvard University, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard University, Boston, MA, USA
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Chloé Sarnowski
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Darryl Nousome
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Soo-Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meng Sun
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Lin Tong
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Wei-Min Chen
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Suraj S. Nongmaithem
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Victor J. Y. Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Claudia H. T. Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yoonjung Yoonie Joo
- Institute of Data Science, Korea University, Seoul, South Korea
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bram Peter Prins
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Aude Nicolas
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa R. Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Edmond Kabagambe
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Academics, Ochsner Health, New Orleans, LA, USA
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anny H. Xiang
- Department of Research and Evaluation, Division of Biostatistics Research, Kaiser Permanente of Southern California, Pasadena, CA, USA
| | - Hyeok Sun Choi
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - K. Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alice Williamson
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jinrui Cui
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Linda S. Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A. Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tarunveer S. Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sonia S. Anand
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
| | - Thomas A. Buchanan
- Department of Medicine, Division of Endocrinology and Diabetes, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Charles F. Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- National Institute for Health and Care Research (NIHR) Blood and Transplant Unit (BTRU) in Donor Health and Behaviour, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Mickaël Canouil
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ji Chen
- Exeter Centre of Excellence in Diabetes (ExCEeD), Exeter Medical School, University of Exeter, Exeter, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shyh-Huei Chen
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Lee-Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Mary Cushman
- Department of Medicine, University of Vermont, Colchester, VT, USA
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- National Institute for Health and Care Research (NIHR) Blood and Transplant Unit (BTRU) in Donor Health and Behaviour, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Swapan K. Das
- Section on Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - H. Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ayo P. Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leslie S. Emery
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - James S. Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Barry I. Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Pauline Genter
- Department of Medicine, Division of Endocrinology and Metabolism, Lundquist Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hertzel C. Gerstein
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Clicerio González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Maria Elena González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lindsay A. Guare
- Genomics and Computational Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sophie Hackinger
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | | | - Christian Herder
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Dusseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Annie-Green Howard
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Willa Hsueh
- Department of Internal Medicine, Diabetes and Metabolism Research Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mengna Huang
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hye-Mi Jang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jost B. Jonas
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Fouad R. Kandeel
- Department of Clinical Diabetes, Endocrinology and Metabolism, Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | | | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Varinderpal Kaur
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacob M. Keaton
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Abel N. Kho
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Health Information Partnerships, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kyung Min Lee
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nanette R. Lee
- USC-Office of Population Studies Foundation Inc., University of San Carlos, Cebu City, Philippines
| | - Aaron Leong
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Symen Lithgart
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Cecilia M. Lindgren
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Big Data Institute, Li Ka Shing Centre For Health Information and Discovery, University of Oxford, Oxford, UK
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Adam E. Locke
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Division of Genomics and Bioinformatics, Washington University School of Medicine, St Louis, MO, USA
- Present address: Regeneron Genetics Center, Tarrytown, NY, USA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jian’an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Andrea O. Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Luo
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Julie A. Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Shiro Maeda
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Vasiliki Mamakou
- Dromokaiteio Psychiatric Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sohail Rafik Mansuri
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Koichi Matsuda
- Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Huan Mo
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D. Morris
- The Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Jerry L. Nadler
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Michael A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Glen Echo, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Uma Nayak
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Sanjay R. Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Snehal Patil
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig Maximilians Universität München, Munich, Germany
| | - Fraser J. Pirie
- Department of Diabetes and Endocrinology, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hannah G. Polikowsky
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bianca Porneala
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gauri Prasad
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Campus, Ghaziabad, India
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Dusseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katheryn Roll
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Kevin Sandow
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alagu Sankareswaran
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohammad Shahriar
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jinxiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Dong Mun Shin
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Chair of Genetic Epidemiology, Institute of Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Tam C. Tran
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fuu-Jen Tsai
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jaakko Tuomilehto
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland, Finnish Institute for Health and Welfare, Helsinki, Finland
- National School of Public Health, Madrid, Spain
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Departamento de Medicina Genómica y Toxiología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Miriam S. Udler
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adan Valladares-Salgado
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rob M. van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jan B. van Klinken
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Chemistry, Laboratory of Genetic Metabolic Disease, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rohit Varma
- Southern California Eye Institute, CHA Hollywood Presbyterian Hospital, Los Angeles, CA, USA
| | - Niels Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Ko Willems van Dijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel R. Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Chittaranjan S. Yajnik
- Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Salim Yusuf
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Liang Zhang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | - Leslie J Raffel
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UCI Irvine School of Medicine, Irvine, CA, USA
| | - Michiya Igase
- Department of Anti-Aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Eli Ipp
- Department of Medicine, Division of Endocrinology and Metabolism, Lundquist Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael A. Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Craig L. Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, US
| | - Erik Ingelsson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diane M. Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James C. Engert
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Amélie Bonnefond
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wayne H. H. Sheu
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M. Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Ronald C. W. Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tiinamaija Tuomi
- Department of Endocrinology, Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Lund University Diabetes Centre, Malmö, Sweden
| | - Giriraj R. Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Guillaume Paré
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Michèle M. Sale
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Deceased
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Ayesha A. Motala
- Department of Diabetes and Endocrinology, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyong-Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Roberta McKean-Cowdin
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Josee Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Woon-Puay Koh
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Donald W. Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Colin N. A. Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, University of Dundee, Dundee, UK
| | - Jaspal S. Kooner
- Department of Cardiology, Ealing Hosptial, London NorthWest Healthcare NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Simin Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
- Department of Medicine, Brown University Alpert School of Medicine, Providence, RI, USA
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danish Saleheen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas J. Wareham
- The Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Juyoung Lee
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Korea
| | - Iona Y. Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Robin G. Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kari Stefansson
- deCODE Genetics, Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mark O. Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité Universitätsmedizin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose C. Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel J. Rader
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Translational Medicine and Therapeutics, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marylyn D. Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Precision Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Joshua C. Denny
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hosptial, London NorthWest Healthcare NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Maggie C. Y. Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jennifer E. Below
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip S. Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyong-Mi Chang
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hosptial, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Present address: Genentech, South San Francisco, CA, USA
| | - James B. Meigs
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Present address: Genentech, South San Francisco, CA, USA
| | - Cassandra N. Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Josep M. Mercader
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marijana Vujkovic
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Epidemiology, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin F. Voight
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
8
|
Burgess S, Mason AM, Grant AJ, Slob EAW, Gkatzionis A, Zuber V, Patel A, Tian H, Liu C, Haynes WG, Hovingh GK, Knudsen LB, Whittaker JC, Gill D. Using genetic association data to guide drug discovery and development: Review of methods and applications. Am J Hum Genet 2023; 110:195-214. [PMID: 36736292 PMCID: PMC9943784 DOI: 10.1016/j.ajhg.2022.12.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Evidence on the validity of drug targets from randomized trials is reliable but typically expensive and slow to obtain. In contrast, evidence from conventional observational epidemiological studies is less reliable because of the potential for bias from confounding and reverse causation. Mendelian randomization is a quasi-experimental approach analogous to a randomized trial that exploits naturally occurring randomization in the transmission of genetic variants. In Mendelian randomization, genetic variants that can be regarded as proxies for an intervention on the proposed drug target are leveraged as instrumental variables to investigate potential effects on biomarkers and disease outcomes in large-scale observational datasets. This approach can be implemented rapidly for a range of drug targets to provide evidence on their effects and thus inform on their priority for further investigation. In this review, we present statistical methods and their applications to showcase the diverse opportunities for applying Mendelian randomization in guiding clinical development efforts, thus enabling interventions to target the right mechanism in the right population group at the right time. These methods can inform investigators on the mechanisms underlying drug effects, their related biomarkers, implications for the timing of interventions, and the population subgroups that stand to gain the most benefit. Most methods can be implemented with publicly available data on summarized genetic associations with traits and diseases, meaning that the only major limitations to their usage are the availability of appropriately powered studies for the exposure and outcome and the existence of a suitable genetic proxy for the proposed intervention.
Collapse
Affiliation(s)
- Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Amy M Mason
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Andrew J Grant
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eric A W Slob
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; UK Dementia Research Institute at Imperial College, Imperial College London, London, UK
| | - Ashish Patel
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Haodong Tian
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Cunhao Liu
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - William G Haynes
- Novo Nordisk Research Centre Oxford, Novo Nordisk, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Global Chief Medical Office, Novo Nordisk, Copenhagen, Denmark
| | - Lotte Bjerre Knudsen
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
| | - John C Whittaker
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
| |
Collapse
|
9
|
Liu X. EMPOWERMENT OF CHINESE BOXING PRACTITIONERS UNDER EARLY TRAINING. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
ABSTRACT Introduction: Early special training has been widely used to improve athletic performance in young Chinese boxing athletes. For athletes to make better use of training time and accumulate maximum special competitive skills, intensive training is required from their youth. Objective: Study the competitive ability of Chinese boxing athletes under strengthening through early physical training. Methods: Through literature method, experimental methods, and mathematical statistical analysis, the athletes’ body composition and their performance in specific and functional physical activities were analyzed. results: Young athletes significantly differed in BMI, height, and limb length (P<0.05). There was no significant difference in height, the distance between fingers, Achilles tendon length (P>0.05). No significant difference was found in flexibility and sensitivity among volunteers (P>0.05). Conclusion: The athletes participating in early training are uniformly matched, the level of tactical ability of the athletes under training has a differential that can directly impact future sports performance, and this practice is recommended to improve the athletes’ sports performance. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
Affiliation(s)
- Xin Liu
- Henan Technical College of Construction, China
| |
Collapse
|
10
|
Perišić MM, Vladimir K, Karpov S, Štorga M, Mostashari A, Khanin R. Polygenic Risk Score and Risk Factors for Preeclampsia and Gestational Hypertension. J Pers Med 2022; 12:1826. [PMID: 36579561 PMCID: PMC9694636 DOI: 10.3390/jpm12111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Preeclampsia and gestational hypertensive disorders (GHD) are common complications of pregnancy that adversely affect maternal and offspring health, often with long-term consequences. High BMI, advanced age, and pre-existing conditions are known risk factors for GHD. Yet, assessing a woman's risk of GHD based on only these characteristics needs to be reevaluated in order to identify at-risk women, facilitate early diagnosis, and implement lifestyle recommendations. This study demonstrates that a risk score developed with machine learning from the case-control genetics dataset can be used as an early screening test for GHD. We further confirm BMI as a risk factor for GHD and investigate a relationship between GHD and genetically constructed anthropometric measures and biomarkers. Our results show that polygenic risk score can be used as an early screening tool that, together with other known risk factors and medical history, would assist in identifying women at higher risk of GHD before its onset to enable stratification of patients into low-risk and high-risk groups for monitoring and preventative programs to mitigate the risks.
Collapse
Affiliation(s)
- Marija Majda Perišić
- LifeNome Inc., New York, NY 10018, USA
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia
| | - Klemo Vladimir
- LifeNome Inc., New York, NY 10018, USA
- Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Mario Štorga
- LifeNome Inc., New York, NY 10018, USA
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Raya Khanin
- LifeNome Inc., New York, NY 10018, USA
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
11
|
Perišić MM, Vladimir K, Karpov S, Štorga M, Mostashari A, Khanin R. Polygenic Risk Score and Risk Factors for Gestational Diabetes. J Pers Med 2022; 12:1381. [PMID: 36143166 PMCID: PMC9505112 DOI: 10.3390/jpm12091381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication of pregnancy that adversely affects maternal and offspring health. A variety of risk factors, such as BMI and age, have been associated with increased risks of gestational diabetes. However, in many cases, gestational diabetes occurs in healthy nulliparous women with no obvious risk factors. Emerging data suggest that the tendency to develop gestational diabetes has genetic and environmental components. Here we develop a polygenic risk score for GDM and investigate relationships between its genetic architecture and genetically constructed risk factors and biomarkers. Our results demonstrate that the polygenic risk score can be used as an early screening tool that identifies women at higher risk of GDM before its onset allowing comprehensive monitoring and preventative programs to mitigate the risks.
Collapse
Affiliation(s)
- Marija Majda Perišić
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia
- LifeNome Inc., New York, NY 10018, USA
| | - Klemo Vladimir
- LifeNome Inc., New York, NY 10018, USA
- Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Mario Štorga
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia
- LifeNome Inc., New York, NY 10018, USA
| | | | - Raya Khanin
- LifeNome Inc., New York, NY 10018, USA
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
12
|
Polynomial Mendelian randomization reveals non-linear causal effects for obesity-related traits. HGG ADVANCES 2022; 3:100124. [PMID: 35832928 PMCID: PMC9272036 DOI: 10.1016/j.xhgg.2022.100124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Causal inference is a critical step in improving our understanding of biological processes, and Mendelian randomization (MR) has emerged as one of the foremost methods to efficiently interrogate diverse hypotheses using large-scale, observational data from biobanks. Although many extensions have been developed to address the three core assumptions of MR-based causal inference (relevance, exclusion restriction, and exchangeability), most approaches implicitly assume that any putative causal effect is linear. Here, we propose PolyMR, an MR-based method that provides a polynomial approximation of an (arbitrary) causal function between an exposure and an outcome. We show that this method provides accurate inference of the shape and magnitude of causal functions with greater accuracy than existing methods. We applied this method to data from the UK Biobank, testing for effects between anthropometric traits and continuous health-related phenotypes, and found most of these (84%) to have causal effects that deviate significantly from linear. These deviations ranged from slight attenuation at the extremes of the exposure distribution, to large changes in the magnitude of the effect across the range of the exposure (e.g., a 1 kg/m2 change in BMI having stronger effects on glucose levels if the initial BMI was higher), to non-monotonic causal relationships (e.g., the effects of BMI on cholesterol forming an inverted U shape). Finally, we show that the linearity assumption of the causal effect may lead to the misinterpretation of health risks at the individual level or heterogeneous effect estimates when using cohorts with differing average exposure levels.
Collapse
|
13
|
Agrawal S, Wang M, Klarqvist MDR, Smith K, Shin J, Dashti H, Diamant N, Choi SH, Jurgens SJ, Ellinor PT, Philippakis A, Claussnitzer M, Ng K, Udler MS, Batra P, Khera AV. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nat Commun 2022; 13:3771. [PMID: 35773277 PMCID: PMC9247093 DOI: 10.1038/s41467-022-30931-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
For any given level of overall adiposity, individuals vary considerably in fat distribution. The inherited basis of fat distribution in the general population is not fully understood. Here, we study up to 38,965 UK Biobank participants with MRI-derived visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes. Because these fat depot volumes are highly correlated with BMI, we additionally study six local adiposity traits: VAT adjusted for BMI and height (VATadj), ASATadj, GFATadj, VAT/ASAT, VAT/GFAT, and ASAT/GFAT. We identify 250 independent common variants (39 newly-identified) associated with at least one trait, with many associations more pronounced in female participants. Rare variant association studies extend prior evidence for PDE3B as an important modulator of fat distribution. Local adiposity traits (1) highlight depot-specific genetic architecture and (2) enable construction of depot-specific polygenic scores that have divergent associations with type 2 diabetes and coronary artery disease. These results - using MRI-derived, BMI-independent measures of local adiposity - confirm fat distribution as a highly heritable trait with important implications for cardiometabolic health outcomes.
Collapse
Affiliation(s)
- Saaket Agrawal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | - Kirk Smith
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joseph Shin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hesam Dashti
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathaniel Diamant
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sean J Jurgens
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anthony Philippakis
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Melina Claussnitzer
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Verve Therapeutics, Cambridge, MA, USA.
| |
Collapse
|
14
|
Janssen LK, Horstmann A. Molecular Imaging of Central Dopamine in Obesity: A Qualitative Review across Substrates and Radiotracers. Brain Sci 2022; 12:486. [PMID: 35448017 PMCID: PMC9031606 DOI: 10.3390/brainsci12040486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a crucial role in adaptive behavior. A wealth of studies suggests obesity-related alterations in the central dopamine system. The most direct evidence for such differences in humans comes from molecular neuroimaging studies using positron emission tomography (PET) and single-photon emission computed tomography (SPECT). The aim of the current review is to give a comprehensive overview of molecular neuroimaging studies that investigated the relation between BMI or weight status and any dopamine target in the striatal and midbrain regions of the human brain. A structured literature search was performed and a summary of the extracted findings are presented for each of the four available domains: (1) D2/D3 receptors, (2) dopamine release, (3) dopamine synthesis, and (4) dopamine transporters. Recent proposals of a nonlinear relationship between severity of obesity and dopamine imbalances are described while integrating findings within and across domains, after which limitations of the review are discussed. We conclude that despite many observed associations between obesity and substrates of the dopamine system in humans, it is unlikely that obesity can be traced back to a single dopaminergic cause or consequence. For effective personalized prevention and treatment of obesity, it will be crucial to identify possible dopamine (and non-dopamine) profiles and their functional characteristics.
Collapse
Affiliation(s)
- Lieneke Katharina Janssen
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany;
- Institute of Psychology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany;
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|