1
|
Urrutia M, Blein-Nicolas M, Fernandez O, Bernillon S, Maucourt M, Deborde C, Balliau T, Rabier D, Bénard C, Prigent S, Quilleré I, Jacob D, Gibon Y, Zivy M, Giauffret C, Hirel B, Moing A. Identification of metabolic and protein markers representative of the impact of mild nitrogen deficit on agronomic performance of maize hybrids. Metabolomics 2024; 20:128. [PMID: 39520587 PMCID: PMC11550246 DOI: 10.1007/s11306-024-02186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION A better understanding of the physiological response of silage maize to a mild reduction in nitrogen (N) fertilization and the identification of predictive biochemical markers of N utilization efficiency could contribute to limit the detrimental effect of the overuse of N inputs. OBJECTIVES We integrated phenotypic and biochemical data to interpret the physiology of maize in response to a mild reduction in N fertilization under agronomic conditions and identify predictive leaf metabolic and proteic markers that could be used to pilot and rationalize N fertilization. METHODS Eco-physiological, developmental and yield-related traits were measured and complemented with metabolomic and proteomic approaches performed on young leaves of a core panel of 29 European genetically diverse dent hybrids cultivated in the field under non-limiting and reduced N fertilization conditions. RESULTS Metabolome and proteome data were analyzed either individually or in an integrated manner together with eco-physiological, developmental, phenotypic and yield-related traits. They allowed to identify (i) common N-responsive metabolites and proteins that could be used as predictive markers to monitor N fertilization, (ii) silage maize hybrids that exhibit improved agronomic performance when N fertilization is reduced. CONCLUSIONS Among the N-responsive metabolites and proteins identified, a cytosolic NADP-dependent malic enzyme and four metabolite signatures stand out as promising markers that could be used for both breeding and agronomic purposes.
Collapse
Affiliation(s)
- Maria Urrutia
- INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, UMR BioEcoAgro, AgroImpact, Site d'Estrées Mons, 80203, Péronne, France
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), UMA-CSIC, Av. Luis Pasteur 49, 29071, Málaga, Spain
| | - Mélisande Blein-Nicolas
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, 91190, Gif-Sur-Yvette, France
| | - Olivier Fernandez
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- University of Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes Research Unit, EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, 51000, Reims, France
| | - Stéphane Bernillon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Mickaël Maucourt
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, 91190, Gif-Sur-Yvette, France
| | | | - Camille Bénard
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Sylvain Prigent
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Isabelle Quilleré
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, 91190, Gif-Sur-Yvette, France
| | - Catherine Giauffret
- INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, UMR BioEcoAgro, AgroImpact, Site d'Estrées Mons, 80203, Péronne, France
| | - Bertrand Hirel
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Annick Moing
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| |
Collapse
|
2
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
3
|
Yang F, Zhang Y, Zhang H, Hu J, Zhu W, Liu L, Liu H, Fahad S, Gao Q. Comparative physiological and transcriptome analysis of leaf nitrogen fluxes in stay-green maize during the vegetative stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108147. [PMID: 37922646 DOI: 10.1016/j.plaphy.2023.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
In maize, nitrogen (N) stored in leaves is an important internal source for supporting subsequent growth and development. However, the regulation of N fluxes and photosynthesis and the molecular and genotypic regulations that modify them are less clear in source leaves during the vegetative stage. This knowledge is crucial for improving N use efficiency (NUE). By using 15N labeling and transcriptome methods, an analysis of the physiological and molecular basis of leaf N import and export processes and photosynthetic N use efficiency (PNUE) was conducted in two maize hybrids (XY335 and XY696) with different stay-green characteristics during the vegetative stage. Leaf N import and export in XY696 were 45% and 33% greater than those in XY335. However, the PNUE in XY335 was 17% greater than that in XY696 due to the higher net photosynthetic rate (A) and lower SLN. Correspondingly, the chlorophyll content and photosynthesis-related enzyme (PEPc, PEPck, PPDK) activities increased by 18∼30% in XY335. Transcriptome analysis indicated that the expression levels of several N and carbon metabolism-related genes encoding Rubisco, PEPc, Nir, GS and AS were significantly increased or decreased in XY696 in parallel with enzyme activities. Moreover, there was a large difference in the expression abundance of genes encoding nitrate/nitrite transporters and transmembrane proteins. Our results suggest that two hybrids modulate leaf N fluxes and photosynthesis differently by altering gene expression and enzyme activities. Our study contributes to understanding leaf N fluxes and PNUE regulation and serves as a crucial reference for NUE improvement in maize breeding research.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yudie Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyi Zhang
- College of Agriculture, Guangxi University, Nanning, 53002, China
| | - Jingwen Hu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Wenjing Zhu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Liu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Qiang Gao
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Limami AM, Cukier C, Hirel B. 15N-labelling of Leaves Combined with GC-MS Analysis as a Tool for Monitoring the Dynamics of Nitrogen Incorporation into Amino Acids. Methods Mol Biol 2023; 2642:151-161. [PMID: 36944877 DOI: 10.1007/978-1-0716-3044-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Labeling plant material such as detached leaves with 15NH4+ is a very instrumental method for the characterization of metabolic pathways of mineral nitrogen assimilation and incorporation into amino acids. A procedure of labeling, followed by amino acid extraction, purification, and derivatization for gas chromatography coupled to mass spectrometry (GC/MS) analysis, is presented. The rationale of heavy isotope abundance calculations and amino acid quantification is detailed. This method is adaptable to various plant species and various kinds of investigations, such as elucidating physiological changes occurring as a result of gene mutations (overexpression or inhibition) in natural variants or genetically modified crops, or characterization of metabolic fluxes in genotypes exhibiting contrasted physiological or developmental adaptive responses to biotic and/or abiotic environmental stresses. Furthermore, the benefit of working on detached organs or pieces of organs is to investigate finely the metabolism of species that are not amenable to laboratory work, such as plants growing in natural environments or under agricultural conditions in the field.
Collapse
Affiliation(s)
- Anis M Limami
- Univ Angers, INRAE, IRHS, SFR QUASAV, Angers, France.
| | | | - Bertrand Hirel
- INRAE, Institut Jean-Pierre Bourgin, Agro-ParisTech, Université Paris-Saclay, Paris, France
| |
Collapse
|
6
|
Valderrama‐Martín JM, Ortigosa F, Ávila C, Cánovas FM, Hirel B, Cantón FR, Cañas RA. A revised view on the evolution of glutamine synthetase isoenzymes in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:946-960. [PMID: 35199893 PMCID: PMC9310647 DOI: 10.1111/tpj.15712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme responsible for the incorporation of inorganic nitrogen in the form of ammonium into the amino acid glutamine. In plants, two groups of functional GS enzymes are found: eubacterial GSIIb (GLN2) and eukaryotic GSIIe (GLN1/GS). Only GLN1/GS genes are found in vascular plants, which suggests that they are involved in the final adaptation of plants to terrestrial life. The present phylogenetic study reclassifies the different GS genes of seed plants into three clusters: GS1a, GS1b and GS2. The presence of genes encoding GS2 has been expanded to Cycadopsida gymnosperms, which suggests the origin of this gene in a common ancestor of Cycadopsida, Ginkgoopsida and angiosperms. GS1a genes have been identified in all gymnosperms, basal angiosperms and some Magnoliidae species. Previous studies in conifers and the gene expression profiles obtained in ginkgo and magnolia in the present work could explain the absence of GS1a in more recent angiosperm species (e.g. monocots and eudicots) as a result of the redundant roles of GS1a and GS2 in photosynthetic cells. Altogether, the results provide a better understanding of the evolution of plant GS isoenzymes and their physiological roles, which is valuable for improving crop nitrogen use efficiency and productivity. This new view of GS evolution in plants, including a new cytosolic GS group (GS1a), has important functional implications in the context of plant metabolism adaptation to global changes.
Collapse
Affiliation(s)
- José Miguel Valderrama‐Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Bertrand Hirel
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre de Versailles‐GrignonRD 1078026Versailles CedexFrance
| | - Francisco R. Cantón
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Rafael A. Cañas
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| |
Collapse
|
7
|
Lebedev VG, Popova AA, Shestibratov KA. Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells 2021; 10:cells10123303. [PMID: 34943810 PMCID: PMC8699818 DOI: 10.3390/cells10123303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Low nitrogen availability is one of the main limiting factors for plant growth and development, and high doses of N fertilizers are necessary to achieve high yields in agriculture. However, most N is not used by plants and pollutes the environment. This situation can be improved by enhancing the nitrogen use efficiency (NUE) in plants. NUE is a complex trait driven by multiple interactions between genetic and environmental factors, and its improvement requires a fundamental understanding of the key steps in plant N metabolism—uptake, assimilation, and remobilization. This review summarizes two decades of research into bioengineering modification of N metabolism to increase the biomass accumulation and yield in crops. The expression of structural and regulatory genes was most often altered using overexpression strategies, although RNAi and genome editing techniques were also used. Particular attention was paid to woody plants, which have great economic importance, play a crucial role in the ecosystems and have fundamental differences from herbaceous species. The review also considers the issue of unintended effects of transgenic plants with modified N metabolism, e.g., early flowering—a research topic which is currently receiving little attention. The future prospects of improving NUE in crops, essential for the development of sustainable agriculture, using various approaches and in the context of global climate change, are discussed.
Collapse
Affiliation(s)
- Vadim G. Lebedev
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Correspondence:
| | - Anna A. Popova
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| | - Konstantin A. Shestibratov
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| |
Collapse
|