1
|
Zhou BY, Li ZX, Li YW, Li JN, Liu WT, Liu XY, Hu ZB, Zhao L, Chen JY, Hu L, Song NN, Feng X, Wang G, Xu L, Ding YQ. Central Med23 deficiency leads to malformation of dentate gyrus and ADHD-like behaviors in mice. Neuropsychopharmacology 2025:10.1038/s41386-025-02088-1. [PMID: 40114018 DOI: 10.1038/s41386-025-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent psychiatric disorder with high heritability, while its etiology and pathophysiology remain unclear. Med23 is a subunit of the Mediator complex, a key regulator of gene expression by linking transcription factors to RNA polymerase II. The mutations of Med23 are associated with several brain diseases including microcephaly, epilepsy and intellectual disability, but its biological roles in brain development and possible behavioral consequence have not been explored in the animal model. In this study, Emx1-Cre mice were used to generate Med23 conditional knockout (Med23 CKO) mice that showed severe hypoplasia of the dentate gyrus (DG) with malformation of the dendritic tree and spines along with impaired short-term synaptic plasticity. Interestingly, Med23 CKO mice exhibited ADHD-like behaviors as shown by hyperactivity, inattention and impulsivity, as well as impaired sensory gating and working memory. Importantly, methylphenidate (MPH), a common drug for ADHD ameliorated these deficits in the CKO mice. Furthermore, we also revealed that the impaired synaptic plasticity was partially restored by MPH in an N-methyl-d-aspartate (NMDA) receptor-dependent way. Collectively, our data demonstrate Med23 deficiency causes DG malformation and ADHD-like behaviors, suggesting a novel mechanism underlying relevant brain diseases.
Collapse
Affiliation(s)
- Bing-Yao Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Xuan Li
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Yi-Wei Li
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming, 650223, China
| | - Wei-Tang Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Zhao
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Jia-Yin Chen
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Ling Hu
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Ning-Ning Song
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Xue Feng
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming, 650223, China.
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, 200032, China.
- Laboratory Animal Center, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Huashan Institute of Medicine (HS-IOM), Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Atalay Ö, Ozyilmaz ED, Önal D, Pehli Vanoğlu B, Çomoğlu T. Development and In vivo Evaluation of Atomoxetine Hydrochloride ODMTs in a Nicotine-induced Attention Deficit Hyperactivity Disorder (ADHD) Model in Rats. AAPS PharmSciTech 2024; 25:173. [PMID: 39085501 DOI: 10.1208/s12249-024-02889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
The current study aimed to evaluate the efficacy of orally administered rapid mini-tablets containing atomoxetine hydrochloride (ODMT) relative to the conventional capsule formulation of atomoxetine hydrochloride (ATO). To mask the bitter taste of ATO and render it more palatable for pediatric administration in individuals with Attention Deficit Hyperactivity Disorder (ADHD), an inclusion complex of ATO with β-cyclodextrin (β-CD) was synthesized. The ODMT and conventional capsule ATO formulations were administered orally to a cohort of ADHD rat pups born to nicotine-exposed dams, facilitating an in vivo efficacy assessment. Behavioral assays, including the open field test, novel object recognition test, and Barnes maze test, were conducted pre- and post-administration of the therapeutics. The outcomes suggested that the ODMT formulation, incorporating ATO-β-CD inclusion complexes, shows promise as a viable alternative to the capsule form of ATO. Conclusively, the preparation of the ATO-β-CD complexes and ODMTs leveraged a factorial experimental design, with the animal model being subjected to nicotine-induced hyperactivity to provide a unique evaluative framework for the ODMT formulation under development.
Collapse
Affiliation(s)
- Özbeyen Atalay
- Faculty of Medicine, Department of Physiology, Hacettepe University, Ankara, Türkiye
| | - Emine Dilek Ozyilmaz
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Eastern Mediterranean University, North Cyprus, Famagusta, Mersin 10, Türkiye
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Türkiye
- Institute of Health Sciences, Ankara University, Ankara, Türkiye
| | - Deniz Önal
- Faculty of Medicine, Department of Physiology, Balıkesir University, Balıkesir, Türkiye
| | - Bilge Pehli Vanoğlu
- Faculty of Medicine, Department of Physiology, Hacettepe University, Ankara, Türkiye
| | - Tansel Çomoğlu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Türkiye.
| |
Collapse
|
3
|
Custodio RJP, Hengstler JG, Cheong JH, Kim HJ, Wascher E, Getzmann S. Adult ADHD: it is old and new at the same time - what is it? Rev Neurosci 2024; 35:225-241. [PMID: 37813870 DOI: 10.1515/revneuro-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Even though the number of studies aiming to improve comprehension of ADHD pathology has increased in recent years, there still is an urgent need for more effective studies, particularly in understanding adult ADHD, both at preclinical and clinical levels, due to the increasing evidence that adult ADHD is highly distinct and a different entity from childhood ADHD. This review paper outlines the symptoms, diagnostics, and neurobiological mechanisms of ADHD, with emphasis on how adult ADHD could be different from childhood-onset. Data show a difference in the environmental, genetic, epigenetic, and brain structural changes, when combined, could greatly impact the behavioral presentations and the severity of ADHD in adults. Furthermore, a crucial aspect in the quest to fully understand this disorder could be through longitudinal analysis. In this way, we will determine if and how the pathology and pharmacology of ADHD change with age. This goal could revolutionize our understanding of the disorder and address the weaknesses in the current clinical classification systems, improving the characterization and validity of ADHD diagnosis, specifically those in adults.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jan G Hengstler
- Systems Toxicology, Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, South Korea
| | - Edmund Wascher
- Experimental Ergonomics, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Stephan Getzmann
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| |
Collapse
|
4
|
Custodio RJP, Ortiz DM, Lee HJ, Sayson LV, Kim M, Lee YS, Kim KM, Cheong JH, Kim HJ. Serotonin 2C receptors are also important in head-twitch responses in male mice. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06482-9. [PMID: 37882810 DOI: 10.1007/s00213-023-06482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Serotonergic psychedelics exert their effects via their high affinity for serotonin (5-HT) receptors, particularly through activating 5-HT2A receptors (5-HT2AR), employing the frontal cortex-dependent head-twitch response (HTR). Although universally believed to be so, studies have not yet fully ascertained whether 5-HT2AR activation is the sole initiator of these psychedelic effects. This is because not all 5-HT2AR agonists exhibit similar pharmacologic properties. OBJECTIVE This study aims to identify and discriminate the roles of 5-HT2AR and 5-HT2CR in the HTR induced by Methallylescaline (MAL) and 4-Methyl-2,5,β-trimethoxyphenethylamine (BOD) in male mice. Also, an analysis of their potential neurotoxic properties was evaluated. METHODS Male mice treated with MAL and BOD were evaluated in different behavioral paradigms targeting HTR and neurotoxicity effects. Drug affinity, pharmacological blocking, and molecular analysis were also conducted to support the behavioral findings. The HTR induced by DOI has been extensively characterized in male mice, making it a good positive control for this study, specifically for comparing the pharmacological effects of our test compounds. RESULTS The activation of 5-HT2CR, alone or in concert with 5-HT2AR, produces a comparable degree of HTRs (at a dose of 1 mg·kg-1), with divergent 5-HT2CR- and 5-HT2AR-Gqα11-mediated signaling and enhanced neurotoxic properties (at a dose of 30 mg·kg-1) coupled with activated pro-inflammatory cytokines. These findings show these compounds' potential psychedelic and neurotoxic effects in male mice. CONCLUSION These findings showed that while 5-HT2AR is the main initiator of HTR, the 5-HT2CR also has a distinct property that renders it effective in inducing HTR in male mice.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystrasse 67, Dortmund, 44139, Germany.
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
5
|
Custodio RJP, Hobloss Z, Myllys M, Hassan R, González D, Reinders J, Bornhorst J, Weishaupt AK, Seddek AL, Abbas T, Friebel A, Hoehme S, Getzmann S, Hengstler JG, van Thriel C, Ghallab A. Cognitive Functions, Neurotransmitter Alterations, and Hippocampal Microstructural Changes in Mice Caused by Feeding on Western Diet. Cells 2023; 12:2331. [PMID: 37759553 PMCID: PMC10529844 DOI: 10.3390/cells12182331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disease in Western countries. It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including liver diseases, are linked with brain dysfunctions. Therefore, this study aims to unravel the effect of MASLD on brain histology, cognitive functions, and neurotransmitters. For this purpose, mice fed for 48 weeks on standard (SD) or Western diet (WD) were evaluated by behavioral tests, followed by sacrifice and analysis of the liver-brain axis including histopathology, immunohistochemistry, and biochemical analyses. Histological analysis of the liver showed features of Metabolic Dysfunction-Associated Steatohepatitis (MASH) in the WD-fed mice including lipid droplet accumulation, inflammation, and fibrosis. This was accompanied by an elevation of transaminase and alkaline phosphatase activities, increase in inflammatory cytokine and bile acid concentrations, as well as altered amino acid concentrations in the blood. Interestingly, compromised blood capillary morphology coupled with astrogliosis and microgliosis were observed in brain hippocampus of the WD mice, indicating neuroinflammation or a disrupted neurovascular unit. Moreover, attention was impaired in WD-fed mice along with the observations of impaired motor activity and balance, enhanced anxiety, and stereotyped head-twitch response (HTR) behaviors. Analysis of neurotransmitters and modulators including dopamine, serotonin, GABA, glutamate, and acetylcholine showed region-specific dysregulation in the brain of the WD-fed mice. In conclusion, the induction of MASH in mice is accompanied by the alteration of cellular morphology and neurotransmitter expression in the brain, associated with compromised cognitive functions.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (J.B.); (A.-K.W.)
| | - Ann-Kathrin Weishaupt
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany; (J.B.); (A.-K.W.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; (R.J.P.C.); (Z.H.); (M.M.); (R.H.); (D.G.); (J.R.); (S.G.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
6
|
Frare C, Pitt SK, Hewett SJ. Sex- and age-dependent contribution of System x c- to cognitive, sensory, and social behaviors revealed by comprehensive behavioral analyses of System x c- null mice. Front Behav Neurosci 2023; 17:1238349. [PMID: 37649973 PMCID: PMC10462982 DOI: 10.3389/fnbeh.2023.1238349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background System xc- (Sxc-) is an important heteromeric amino acid cystine/glutamate exchanger that plays a pivotal role in the CNS by importing cystine into cells while exporting glutamate. Although certain behaviors have been identified as altered in Sxc- null mutant mice, our understanding of the comprehensive impact of Sxc- on behavior remains incomplete. Methods To address this gap, we compared motor, sensory and social behaviors of male and female mice in mice null for Sxc- (SLC7A11sut/sut) with wildtype littermates (SLC7A11+/+) in a comprehensive and systematic manner to determine effects of genotype, sex, age, and their potential interactions. Results Motor performance was not affected by loss of Sxc- in both males and females, although it was impacted negatively by age. Motor learning was specifically disrupted in female mice lacking Sxc- at both 2 and 6 months of age. Further, female SLC7A11sut/sut mice at both ages exhibited impaired sociability, but normal spatial and recognition memory, as well as sensorimotor gating. Finally, pronounced open-space anxiety was displayed by female SLC7A11sut/sut when they were young. In contrast, young SLC7A11sut/sut male mice demonstrated normal sociability, delayed spatial learning, increased open-space anxiety and heightened sensitivity to noise. As they aged, anxiety and noise sensitivity abated but hyperactivity emerged. Discussion We find that the behavioral phenotypes of female SLC7A11sut/sut are similar to those observed in mouse models of autism spectrum disorder, while behaviors of male SLC7A11sut/sut resemble those seen in mouse models of attention deficit hyperactivity disorder. These results underscore the need for further investigation of SLC7A11 in neurodevelopment. By expanding our understanding of the potential involvement of Sxc-, we may gain additional insights into the mechanisms underlying complex neurodevelopmental conditions.
Collapse
Affiliation(s)
| | | | - Sandra J. Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
7
|
Sayson LV, Ortiz DM, Lee HJ, Kim M, Custodio RJP, Yun J, Lee CH, Lee YS, Cha HJ, Cheong JH, Kim HJ. Deletion of Cryab increases the vulnerability of mice to the addiction-like effects of the cannabinoid JWH-018 via upregulation of striatal NF-κB expression. Front Pharmacol 2023; 14:1135929. [PMID: 37007015 PMCID: PMC10060981 DOI: 10.3389/fphar.2023.1135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Synthetic cannabinoids have exhibited unpredictable abuse liabilities, especially self-administration (SA) responses in normal rodent models, despite seemingly inducing addiction-like effects in humans. Thus, an efficient pre-clinical model must be developed to determine cannabinoid abuse potential in animals and describe the mechanism that may mediate cannabinoid sensitivity. The Cryab knockout (KO) mice were recently discovered to be potentially sensitive to the addictive effects of psychoactive drugs. Herein, we examined the responses of Cryab KO mice to JWH-018 using SA, conditioned place preference, and electroencephalography. Additionally, the effects of repeated JWH-018 exposure on endocannabinoid- and dopamine-related genes in various addiction-associated brain regions were examined, along with protein expressions involving neuroinflammation and synaptic plasticity. Cryab KO mice exhibited greater cannabinoid-induced SA responses and place preference, along with divergent gamma wave alterations, compared to wild-type (WT) mice, implying their higher sensitivity to cannabinoids. Endocannabinoid- or dopamine-related mRNA expressions and accumbal dopamine concentrations after repeated JWH-018 exposure were not significantly different between the WT and Cryab KO mice. Further analyses revealed that repeated JWH-018 administration led to possibly greater neuroinflammation in Cryab KO mice, which may arise from upregulated NF-κB, accompanied by higher expressions of synaptic plasticity markers, which might have contributed to the development of cannabinoid addiction-related behavior in Cryab KO mice. These findings signify that increased neuroinflammation via NF-κB may mediate the enhanced addiction-like responses of Cryab KO mice to cannabinoids. Altogether, Cryab KO mice may be a potential model for cannabinoid abuse susceptibility.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors—IfADo, Dortmund, Germany
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Chae Hyeon Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam–do, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| |
Collapse
|
8
|
Ortiz DMD, Kim M, Lee HJ, Botanas CJ, Custodio RJP, Sayson LV, Campomayor NB, Lee C, Lee YS, Cheong JH, Kim HJ. 4-F-PCP, a Novel PCP Analog Ameliorates the Depressive-Like Behavior of Chronic Social Defeat Stress Mice via NMDA Receptor Antagonism. Biomol Ther (Seoul) 2023; 31:227-239. [PMID: 36789738 PMCID: PMC9970834 DOI: 10.4062/biomolther.2022.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
Major depressive disorder is a leading cause of disability in more than 280 million people worldwide. Monoamine-based antidepressants are currently used to treat depression, but delays in treatment effects and lack of responses are major reasons for the need to develop faster and more efficient antidepressants. Studies show that ketamine (KET), a PCP analog, produces antidepressant effects within a few hours of administration that lasts up to a week. However, the use of KET has raised concerns about side effects, as well as the risk of abuse. 4 -F-PCP analog is a novel PCP analog that is also an NMDA receptor antagonist, structurally similar to KET, and might potentially elicit similar antidepressant effects, however, there has been no study on this subject yet. Herein, we investigate whether 4-F-PCP displays antidepressant effects and explored their potential therapeutic mechanisms. 4-F-PCP at 3 and 10 mg/kg doses showed antidepressant-like effects and repeated treatments maintained its effects. Furthermore, treatment with 4-F-PCP rescued the decreased expression of proteins most likely involved in depression and synaptic plasticity. Changes in the excitatory amino acid transporters (EAAT2, EAAT3, EAAT4) were also seen following drug treatment. Lastly, we assessed the possible side effects of 4-F-PCP after long-term treatment (up to 21 days). Results show that 4-F-PCP at 3 mg/kg dose did not alter the cognitive function of mice. Overall, current findings provide significant implications for future research not only with PCP analogs but also on the next generation of different types of antidepressants.
Collapse
Affiliation(s)
- Darlene Mae D. Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea,Department of Chemistry & Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Nicole Bon Campomayor
- Department of Chemistry & Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Chaeyeon Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Sup Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea,Corresponding Authors E-mail: (Cheong JH), (Kim HJ), Tel: +82-2-2339-1605 (Cheong JH), +82-2-3399-1609 (Kim HJ), Fax: +82-2-2339-1619 (Cheong JH), +82-2-3399-1617 (Kim HJ)
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea,Corresponding Authors E-mail: (Cheong JH), (Kim HJ), Tel: +82-2-2339-1605 (Cheong JH), +82-2-3399-1609 (Kim HJ), Fax: +82-2-2339-1619 (Cheong JH), +82-2-3399-1617 (Kim HJ)
| |
Collapse
|
9
|
Custodio RJP, Kim M, Chung YC, Kim BN, Kim HJ, Cheong JH. Thrsp Gene and the ADHD Predominantly Inattentive Presentation. ACS Chem Neurosci 2023; 14:573-589. [PMID: 36716294 DOI: 10.1021/acschemneuro.2c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There are three presentations of attention-deficit/hyperactivity disorder (ADHD): the predominantly inattention (ADHD-PI), predominantly hyperactive-impulsive (ADHD-HI), and combined (ADHD-C) presentations of ADHD. These may represent distinct childhood-onset neurobehavioral disorders with separate etiologies. ADHD diagnoses are behaviorally based, so investigations into potential etiologies should be founded on behavior. Animal models of ADHD demonstrate face, predictive, and construct validity when they accurately reproduce elements of the symptoms, etiology, biochemistry, and disorder treatment. Spontaneously hypertensive rats (SHR/NCrl) fulfill many validation criteria and compare well with clinical cases of ADHD-C. Compounding the difficulty of selecting an ideal model to study specific presentations of ADHD is a simple fact that our knowledge regarding ADHD neurobiology is insufficient. Accordingly, the current review has explored a potential animal model for a specific presentation, ADHD-PI, with acceptable face, predictive, and construct validity. The Thrsp gene could be a biomarker for ADHD-PI presentation, and THRSP OE mice could represent an animal model for studying this distinct ADHD presentation.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors─IfADo, Ardeystraße 67, 44139 Dortmund, Germany
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Bung-Nyun Kim
- Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, 101 Daehakro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
10
|
Kim H, Noh M, Zhang H, Kim Y, Park S, Park J, Kwon YG. Long-term administration of CU06-1004 ameliorates cerebrovascular aging and BBB injury in aging mouse model. Fluids Barriers CNS 2023; 20:9. [PMID: 36726154 PMCID: PMC9893613 DOI: 10.1186/s12987-023-00410-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Age-related changes in the cerebrovasculature, including blood-brain barrier (BBB) disruption and vascular dementia, are emerging as potential risks for many neurodegenerative diseases. Therefore, the endothelial cells that constitute the cerebrovasculature may play key roles in preventing brain injury. Our previous study showed that CU06-1004, an endothelial cell dysfunction blocker, prevented vascular leakage, enhanced vascular integrity in ischemic reperfusion injury, and promoted the normalization of tumor vasculature. Here, we evaluated the effects of CU06-1004 on age-related cerebrovascular functional decline in the aged mouse brain. RESULTS In this study, we investigated the protective effects of CU06-1004 against oxidative stress-induced damage in human brain microvascular endothelial cells (HBMECs). HBMECs were treated with hydrogen peroxide (H2O2) to establish an oxidative stress-induced model of cellular injury. Compared with H2O2 treatment alone, pretreatment of HBMECs with CU06-1004 considerably reduced oxidative stress-induced cytotoxicity, reactive oxygen species generation, senescence-associated β-galactosidase activity, senescence marker expression, and the expression levels of inflammatory proteins. Based on the observed cytoprotective effects of CU06-1004 in HBMECs, we examined whether CU06-1004 displayed protective effects against cerebrovascular aging in mice. Long-term administration of CU06-1004 alleviated age-associated cerebral microvascular rarefaction and cerebrovascular senescence in the aged mouse brain. CU06-1004 supplementation also reduced the extravasation of plasma IgG by improving BBB integrity in the aged mouse brain, associated with reductions in neuronal injury. A series of behavioral tests also revealed improved motor and cognitive functions in aged mice that received long-term CU06-1004 administration. CONCLUSIONS These findings suggest that CU06-1004 may represent a promising therapeutic approach for delaying age-related cerebrovascular impairment and improving cognitive function in old age.
Collapse
Affiliation(s)
- Hyejeong Kim
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Korea
| | - Minyoung Noh
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Korea
| | | | - Yeomyeong Kim
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Korea
| | - Songyi Park
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Korea
| | - Jeongeun Park
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Korea
| | - Young-Guen Kwon
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Korea
| |
Collapse
|
11
|
Custodio RJP, Kim HJ, Kim J, Ortiz DM, Kim M, Buctot D, Sayson LV, Lee HJ, Kim BN, Yi EC, Cheong JH. Hippocampal dentate gyri proteomics reveals Wnt signaling involvement in the behavioral impairment in the THRSP-overexpressing ADHD mouse model. Commun Biol 2023; 6:55. [PMID: 36646879 PMCID: PMC9842619 DOI: 10.1038/s42003-022-04387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) often struggle with impaired executive function, temporal processing, and visuospatial memory, hallmarks of the predominantly inattentive presentation (ADHD-PI), subserved by the hippocampus. However, the specific genes/proteins involved and how they shape hippocampal structures to influence ADHD behavior remain poorly understood. As an exploratory tool, hippocampal dentate gyri tissues from thyroid hormone-responsive protein overexpressing (THRSP OE) mice with defining characteristics of ADHD-PI were utilized in proteomics. Integrated proteomics and network analysis revealed an altered protein network involved in Wnt signaling. Compared with THRSP knockout (KO) mice, THRSP OE mice showed impaired attention and memory, accompanied by dysregulated Wnt signaling affecting hippocampal dentate gyrus cell proliferation and expression of markers for neural stem cell (NSC) activity. Also, combined exposure to an enriched environment and treadmill exercise could improve behavioral deficits in THRSP OE mice and Wnt signaling and NSC activity. These findings show new markers specific to the ADHD-PI presentation, converging with the ancient and evolutionary Wnt signaling pathways crucial for cell fate determination, migration, polarity, and neural patterning during neurodevelopment. These findings from THRSP OE mice support the role of Wnt signaling in neurological disorders, particularly ADHD-PI presentation.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- grid.419241.b0000 0001 2285 956XDepartment of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystr. 67, 44139 Dortmund, Germany ,grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea ,grid.411545.00000 0004 0470 4320Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si Jeollabuk-do, 54896 Republic of Korea
| | - Hee Jin Kim
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Jiyeon Kim
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Darlene Mae Ortiz
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Mikyung Kim
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea ,grid.412357.60000 0004 0533 2063Department of Chemistry & Life Science, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Danilo Buctot
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Leandro Val Sayson
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Hyun Jun Lee
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Bung-Nyun Kim
- grid.31501.360000 0004 0470 5905Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, 101 Daehakro, Jongno-gu Seoul, 03080 Republic of Korea
| | - Eugene C. Yi
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jae Hoon Cheong
- grid.411545.00000 0004 0470 4320Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si Jeollabuk-do, 54896 Republic of Korea
| |
Collapse
|
12
|
Custodio RJP, Kim M, Sayson LV, Ortiz DM, Buctot D, Lee HJ, Cheong JH, Kim HJ. Regulation of clock and clock-controlled genes during morphine reward and reinforcement: Involvement of the period 2 circadian clock. J Psychopharmacol 2022; 36:875-891. [PMID: 35486444 DOI: 10.1177/02698811221089040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Morphine abuse is a devastating disorder that affects millions of people worldwide, and literature evidence indicates a relationship between opioid abuse and the circadian clock. AIM We explored morphine reward and reinforcement using mouse models with Per2 gene modifications (knockout (KO); overexpression (OE)). METHODS Mice were exposed to various behavioral, electroencephalographic, pharmacological, and molecular tests to assess the effects of morphine and identify the underlying mechanisms with a focus on reward and reinforcement and the corresponding involvement of circadian and clock-controlled gene regulation. RESULTS Per2 deletion enhances morphine-induced analgesia, locomotor sensitization, conditioned place preference (CPP), and self-administration (SA) in mice, whereas its overexpression attenuated these effects. In addition, reduced withdrawal was observed in Per2 KO mice, whereas an augmented withdrawal response was observed in Per2 OE mice. Moreover, naloxone and SCH 23390 blocked morphine CPP in Per2 KO and wild-type (WT) mice. The rewarding (CPP) and reinforcing effects (SA) observed in morphine-conditioned and morphine self-administered Per2 KO and WT mice were accompanied by activated μ-opioid and dopamine D1 receptors and TH in the mesolimbic (VTA/NAcc) system. Furthermore, genetic modifications of Per2 in mice innately altered some clock genes in response to morphine. CONCLUSION These findings improve our understanding of the role of Per2 in morphine-induced psychoactive effects. Our data and those obtained in previous studies indicate that targeting Per2 may have applicability in the treatment of substance abuse.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Danilo Buctot
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|