1
|
de Miguel-Perez D, Arroyo-Hernandez M, La Salvia S, Gunasekaran M, Pickering EM, Avila S, Gebru E, Becerril-Vargas E, Monraz-Perez S, Saharia K, Grazioli A, McCurdy MT, Frieman M, Miorin L, Russo A, Cardona AF, García-Sastre A, Kaushal S, Hirsch FR, Atanackovic D, Sahoo S, Arrieta O, Rolfo C. Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19. J Extracell Vesicles 2024; 13:e70001. [PMID: 39558820 PMCID: PMC11574309 DOI: 10.1002/jev2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.
Collapse
Affiliation(s)
- Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Medical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Sabrina La Salvia
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Muthukumar Gunasekaran
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward M Pickering
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stephanie Avila
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Etse Gebru
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | | | | | - Kapil Saharia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alison Grazioli
- Department of Medicine, Program in Trauma, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrés F Cardona
- Institute for Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sunjay Kaushal
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Djordje Atanackovic
- Transplant and Cellular Therapy Program, Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerologia (INCan), Mexico City, Mexico
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Medical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Omar MA, El Hawary R, Eldash A, Sadek KM, Soliman NA, Hanna MOF, Shawky SM. Neutrophilic Myeloid-Derived Suppressor Cells and Severity in SARS-CoV-2 Infection. Lab Med 2024; 55:153-161. [PMID: 37352143 DOI: 10.1093/labmed/lmad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND While we strive to live with SARS-CoV-2, defining the immune response that leads to recovery rather than severe disease remains highly important. COVID-19 has been associated with inflammation and a profoundly suppressed immune response. OBJECTIVE To study myeloid-derived suppressor cells (MDSCs), which are potent immunosuppressive cells, in SARS-CoV-2 infection. RESULTS Patients with severe and critical COVID-19 showed higher frequencies of neutrophilic (PMN)-MDSCs than patients with moderate illness and control individuals (P = .005). Severe disease in individuals older and younger than 60 years was associated with distinct PMN-MDSC frequencies, being predominantly higher in patients of 60 years of age and younger (P = .004). However, both age groups showed comparable inflammatory markers. In our analysis for the prediction of poor outcome during hospitalization, MDSCs were not associated with increased risk of death. Still, patients older than 60 years of age (odds ratio [OR] = 5.625; P = .02) with preexisting medical conditions (OR = 2.818; P = .003) showed more severe disease and worse outcome. Among the immunological parameters, increased C-reactive protein (OR = 1.015; P = .04) and lymphopenia (OR = 5.958; P = .04) strongly identified patients with poor prognosis. CONCLUSION PMN-MDSCs are associated with disease severity in COVID-19; however, MDSC levels do not predict increased risk of death during hospitalization.
Collapse
Affiliation(s)
- Mona A Omar
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Rabab El Hawary
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Alia Eldash
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| | - Khaled M Sadek
- Department of Internal Medicine and Nephrology, Cairo University, Cairo, Egypt
| | | | | | - Shereen M Shawky
- Department of Clinical Pathology, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Reinig S, Shih SR. Non-neutralizing functions in anti-SARS-CoV-2 IgG antibodies. Biomed J 2024; 47:100666. [PMID: 37778697 PMCID: PMC10825350 DOI: 10.1016/j.bj.2023.100666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Most individuals infected with or vaccinated against COVID-19 develop antigenic neutralizing immunoglobulin G (IgG) antibodies against the SARS-CoV-2 spike protein. Although neutralizing antibodies are biomarkers of the adaptive immune response, their mere presence is insufficient to explain the protection afforded against the disease or its pathology. IgG exhibits other secondary effector functions that activate innate immune components, including complement, natural killer cells, and macrophages. The affinity for effector cells depends on the isotypes and glycosylation of IgG antibodies. The anti-spike IgG titer should be sufficient to provide significant Fc-mediated effects in severe COVID-19, mRNA, and protein subunit vaccinations. In combination with aberrant effector cells, pro-inflammatory afucosylated IgG1 and IgG3 may be detrimental in severe COVID-19. The antibody response of mRNA vaccines leads to higher fucosylation and a less inflammatory IgG profile, with a long-term shift to IgG4, which is correlated with protection from disease.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
4
|
N’Guessan A, Kailasam S, Mostefai F, Poujol R, Grenier JC, Ismailova N, Contini P, De Palma R, Haber C, Stadler V, Bourque G, Hussin JG, Shapiro BJ, Fritz JH, Piccirillo CA. Selection for immune evasion in SARS-CoV-2 revealed by high-resolution epitope mapping and sequence analysis. iScience 2023; 26:107394. [PMID: 37599818 PMCID: PMC10433132 DOI: 10.1016/j.isci.2023.107394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Here, we exploit a deep serological profiling strategy coupled with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune responses. Applying a high-density peptide array (HDPA) spanning the entire proteomes of SARS-CoV-2 and endemic human coronaviruses allowed identification of B cell epitopes and relate them to their evolutionary and structural properties. We identify hotspots of pre-existing immunity and identify cross-reactive epitopes that contribute to increasing the overall humoral immune response to SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the differences across proteins, waves, and SARS-CoV-2 variants. Lastly, we show that mutations in spike and nucleocapsid epitopes are under stronger selection between than within patients, suggesting that most of the selective pressure for immune evasion occurs upon transmission between hosts.
Collapse
Affiliation(s)
- Arnaud N’Guessan
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Senthilkumar Kailasam
- Canadian Center for Computational Genomics, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Fatima Mostefai
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Raphaël Poujol
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Nailya Ismailova
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Paola Contini
- Department of Internal Medicine, University of Genoa and IRCCS IST-Ospedale San Martino, Genoa, Italy
| | - Raffaele De Palma
- Department of Internal Medicine, University of Genoa and IRCCS IST-Ospedale San Martino, Genoa, Italy
| | | | | | - Guillaume Bourque
- Canadian Center for Computational Genomics, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Julie G. Hussin
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program of the Research Institute of McGill Health Center, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| |
Collapse
|
5
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
6
|
The function of myeloid-derived suppressor cells in COVID-19 lymphopenia. Int Immunopharmacol 2022; 112:109277. [PMID: 36206651 PMCID: PMC9513342 DOI: 10.1016/j.intimp.2022.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a global pandemic and presents a significant danger to public health. Lymphopenia is considered to be the defining characteristic of severe COVID-19, especially in elderly people. Lymphopenia has been suggested as a pivotal factor in disease severity. To minimize mortality in COVID-19 patients, it is essential to have a deeper understanding of the processes behind lymphocytopenia. Recently, myeloid-derived suppressor cells (MDSCs) have been confirmed as a key mediator of lymphopenia. MDSCs are characterized by their powerful capacity to suppress T cells and eventually contribute to the course of illness. Targeting these cells may improve the disease prognosis. In this article, we analyze the available research on MDSCs in lymphopenia and discuss their immunopathologic changes and prospective therapeutic targets in patients with COVID-19 lymphocytopenia.
Collapse
|
7
|
Saharia KK, Husson JS, Niederhaus SV, Iraguha T, Avila SV, Yoo YJ, Hardy NM, Fan X, Omili D, Crane A, Carrier A, Xie WY, Vander Mause E, Hankey K, Bauman S, Lesho P, Mannuel HD, Ahuja A, Mathew M, Avruch J, Baddley J, Goloubeva O, Shetty K, Dahiya S, Rapoport AP, Luetkens T, Atanackovic D. Humoral immunity against SARS-CoV-2 variants including omicron in solid organ transplant recipients after three doses of a COVID-19 mRNA vaccine. Clin Transl Immunology 2022; 11:e1391. [PMID: 35505864 PMCID: PMC9052011 DOI: 10.1002/cti2.1391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Solid organ transplant recipients (SOTR) receiving post‐transplant immunosuppression show increased COVID‐19‐related mortality. It is unclear whether an additional dose of COVID‐19 vaccines can overcome the reduced immune responsiveness against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) variants. Methods We analysed humoral immune responses against SARS‐CoV‐2 and its variants in 53 SOTR receiving SARS‐CoV‐2 vaccination. Results Following the initial vaccination series, 60.3% of SOTR showed no measurable neutralisation and only 18.9% demonstrated neutralising activity of > 90%. More intensive immunosuppression, antimetabolites in particular, negatively impacted antiviral immunity. While absolute IgG levels were lower in SOTR than controls, antibody titres against microbial recall antigens were higher. By contrast, SOTR showed reduced vaccine‐induced IgG/IgA antibody titres against SARS‐CoV‐2 and its delta variants and fewer linear B‐cell epitopes, indicating reduced B‐cell diversity. Importantly, a third vaccine dose led to an increase in anti‐SARS‐CoV‐2 antibody titres and neutralising activity across alpha, beta and delta variants and to the induction of anti‐SARS‐CoV‐2 CD4+ T cells in a subgroup of patients analysed. By contrast, we observed significantly lower antibody titres after the third dose with the omicron variant compared to the ancestral SARS‐CoV‐2 and the improvement in neutralising activity was much less pronounced than for all the other variants. Conclusion Only a small subgroup of solid organ transplant recipients is able to generate functional antibodies after an initial vaccine series; however, an additional vaccine dose resulted in dramatically improved antibody responses against all SARS‐CoV‐2 variants except omicron where antibody responses and neutralising activity remained suboptimal.
Collapse
Affiliation(s)
- Kapil K Saharia
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD USA.,Divison of Infectious Diseases University of Maryland School of Medicine Baltimore MD USA
| | - Jennifer S Husson
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD USA.,Divison of Infectious Diseases University of Maryland School of Medicine Baltimore MD USA
| | - Silke V Niederhaus
- Department of Surgery University of Maryland School of Medicine Baltimore MD USA
| | - Thierry Iraguha
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Stephanie V Avila
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Youngchae J Yoo
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD USA
| | - Nancy M Hardy
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Xiaoxuan Fan
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA
| | - Destiny Omili
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Alice Crane
- Department of Surgery University of Maryland School of Medicine Baltimore MD USA
| | - Amber Carrier
- Department of Surgery University of Maryland School of Medicine Baltimore MD USA
| | - Wen Y Xie
- University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA.,Department of Surgery University of Florida College of Medicine Gainesville FL USA
| | - Erica Vander Mause
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Kim Hankey
- Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Sherri Bauman
- Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Patricia Lesho
- Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Heather D Mannuel
- University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA.,Baltimore Veterans Affairs Medical Center Baltimore MD USA
| | - Ashish Ahuja
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA
| | - Minu Mathew
- Divison of Infectious Diseases University of Maryland School of Medicine Baltimore MD USA
| | - James Avruch
- Department of Surgery University of Maryland School of Medicine Baltimore MD USA
| | - John Baddley
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD USA.,Divison of Infectious Diseases University of Maryland School of Medicine Baltimore MD USA.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Olga Goloubeva
- Department of Epidemiology and Public Health University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Kirti Shetty
- Division of Hepatology/Liver Transplantation University of Maryland School of Medicine Baltimore MD USA
| | - Saurabh Dahiya
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Aaron P Rapoport
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA
| | - Tim Luetkens
- Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA.,Department of Microbiology and Immunology University of Maryland Baltimore MD USA
| | - Djordje Atanackovic
- Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Transplant and Cellular Therapy Program University of Maryland Greenebaum Comprehensive Cancer Center Baltimore MD USA.,Department of Microbiology and Immunology University of Maryland Baltimore MD USA
| |
Collapse
|
8
|
Perfilyeva YV, Ostapchuk YO, Tleulieva R, Kali A, Abdolla N, Krasnoshtanov VK, Perfilyeva AV, Belyaev NN. Myeloid-derived suppressor cells in COVID-19: A review. Clin Immunol 2022; 238:109024. [PMID: 35489643 PMCID: PMC9042722 DOI: 10.1016/j.clim.2022.109024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially life-threatening infection characterized by excessive inflammation, coagulation disorders and organ damage. A dysregulated myeloid cell compartment is one of the most striking immunopathologic signatures of this newly emerged infection. A growing number of studies are reporting on the expansion of myeloid cells with immunoregulatory activities in the periphery and airways of COVID-19 patients. These cells share phenotypic and functional similarities with myeloid-derived suppressor cells (MDSCs), which were first described in cancer patients. MDSCs are a heterogeneous population of pathologically activated myeloid cells that exert immunosuppressive activities against mainly effector T cells. The increased frequency of these cells in COVID-19 patients suggests that they are involved in immune regulation during this infection. In this article, we review the current findings on MDSCs in COVID-19 and discuss the complex role of these cells in the immunopathology of COVID-19.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan.
| | - Yekaterina O Ostapchuk
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Aykin Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | | | | | - Nikolai N Belyaev
- Saint-Petersburg Pasteur Institute, 14 Mira St., St. Petersburg 197101, Russia
| |
Collapse
|
9
|
Role of T Regulatory Cells and Myeloid-Derived Suppressor Cells in COVID-19. J Immunol Res 2022; 2022:5545319. [PMID: 35497875 PMCID: PMC9042623 DOI: 10.1155/2022/5545319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been raised as a pandemic disease since December 2019. Immunosuppressive cells including T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are key players in immunological tolerance and immunoregulation; however, they contribute to the pathogenesis of different diseases including infections. Tregs have been shown to impair the protective role of CD8+ T lymphocytes against viral infections. In COVID-19 patients, most studies reported reduction, while few other studies found elevation in Treg levels. Moreover, Tregs have a dual role, depending on the different stages of COVID-19 disease. At early stages of COVID-19, Tregs have a critical role in decreasing antiviral immune responses, and consequently reducing the viral clearance. On the other side, during late stages, Tregs reduce inflammation-induced organ damage. Therefore, inhibition of Tregs in early stages and their expansion in late stages have potentials to improve clinical outcomes. In viral infections, MDSC levels are highly increased, and they have the potential to suppress T cell proliferation and reduce viral clearance. Some subsets of MDSCs are expanded in the blood of COVID-19 patients; however, there is a controversy whether this expansion has pathogenic or protective effects in COVID-19 patients. In conclusion, further studies are required to investigate the role and function of immunosuppressive cells and their potentials as prognostic biomarkers and therapeutic targets in COVID-19 patients.
Collapse
|