1
|
Mandino F, Horien C, Shen X, Desrosiers-Grégoire G, Luo W, Markicevic M, Constable RT, Papademetris X, Chakravarty MM, Betzel RF, Lake EMR. Multimodal identification of the mouse brain using simultaneous Ca 2+ imaging and fMRI. Commun Biol 2025; 8:665. [PMID: 40287579 PMCID: PMC12033268 DOI: 10.1038/s42003-025-08037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the prevailing modality in this field-blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI)-suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome-based identification to be successful and explored various features of these data.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- MD/PhD program, Yale University School of Medicine, New Haven, CT, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Gabriel Desrosiers-Grégoire
- Computational Brain Anatomy Laboratory, Douglas Mental Health University Institute, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Wendy Luo
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- MD/PhD program, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
- Deparment of Biomedical Informatics and Data Science, Yale University, New Haven, CT, USA
| | - Mallar M Chakravarty
- Computational Brain Anatomy Laboratory, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Zugman A, Ringlein GV, Finn ES, Lewis KM, Berman E, Silverman WK, Lebowitz ER, Pine DS, Winkler AM. Brain functional connectivity and anatomical features as predictors of cognitive behavioral therapy outcome for anxiety in youths. Psychol Med 2025; 55:e91. [PMID: 40125734 PMCID: PMC12080668 DOI: 10.1017/s0033291724003131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/26/2024] [Accepted: 11/07/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND Because pediatric anxiety disorders precede the onset of many other problems, successful prediction of response to the first-line treatment, cognitive-behavioral therapy (CBT), could have a major impact. This study evaluates whether structural and resting-state functional magnetic resonance imaging can predict post-CBT anxiety symptoms. METHODS Two datasets were studied: (A) one consisted of n = 54 subjects with an anxiety diagnosis, who received 12 weeks of CBT, and (B) one consisted of n = 15 subjects treated for 8 weeks. Connectome predictive modeling (CPM) was used to predict treatment response, as assessed with the PARS. The main analysis included network edges positively correlated with treatment outcome and age, sex, and baseline anxiety severity as predictors. Results from alternative models and analyses are also presented. Model assessments utilized 1000 bootstraps, resulting in a 95% CI for R2, r, and mean absolute error (MAE). RESULTS The main model showed a MAE of approximately 3.5 (95% CI: [3.1-3.8]) points, an R2 of 0.08 [-0.14-0.26], and an r of 0.38 [0.24-0.511]. When testing this model in the left-out sample (B), the results were similar, with an MAE of 3.4 [2.8-4.7], R2-0.65 [-2.29-0.16], and r of 0.4 [0.24-0.54]. The anatomical metrics showed a similar pattern, where models rendered overall low R2. CONCLUSIONS The analysis showed that models based on earlier promising results failed to predict clinical outcomes. Despite the small sample size, this study does not support the extensive use of CPM to predict outcomes in pediatric anxiety.
Collapse
Affiliation(s)
- Andre Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Grace V. Ringlein
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Emily S. Finn
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Krystal M. Lewis
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Erin Berman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anderson M. Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Division of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
3
|
Mandino F, Horien C, Shen X, Desrosiers-Grégoire G, Luo W, Markicevic M, Todd Constable R, Papademetris X, Chakravarty MM, Betzel RF, Lake EMR. Multimodal identification of the mouse brain using simultaneous Ca 2+ imaging and fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.24.594620. [PMID: 38826324 PMCID: PMC11142213 DOI: 10.1101/2024.05.24.594620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome-based identification to be successful and explored various features of these data.
Collapse
|
4
|
Ramduny J, Uddin LQ, Vanderwal T, Feczko E, Fair DA, Kelly C, Baskin-Sommers A. Representing Brain-Behavior Associations by Retaining High-Motion Minoritized Youth. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00037-0. [PMID: 39921132 DOI: 10.1016/j.bpsc.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Population neuroscience datasets provide an opportunity for researchers to estimate reproducible effect sizes for brain-behavior associations because of their large sample sizes. However, these datasets undergo strict quality control to mitigate sources of noise, such as head motion. This practice often excludes a disproportionate number of minoritized individuals. METHODS We used motion-ordering and motion-ordering+resampling (bagging) to test whether these methods preserve functional magnetic resonance imaging (fMRI) data in the Adolescent Brain Cognitive Development (ABCD) Study (N = 5733). For the 2 methods, brain-behavior associations were computed as the partial Spearman's rank correlations (Rs) between functional connectivity and cognitive performance (NIH Cognition Toolbox) as well as externalizing and internalizing psychopathology (Child Behavior Checklist) while adjusting for participant sex assigned at birth and head motion. RESULTS Black and Hispanic youth exhibited excess head motion relative to data collected from White youth and were discarded disproportionately when conventional approaches were used. Motion-ordering and bagging methods retained more than 99% of Black and Hispanic youth. Both methods produced reproducible brain-behavior associations across low-/high-motion racial/ethnic groups based on motion-limited fMRI data. CONCLUSIONS The motion-ordering and bagging methods are 2 feasible approaches that can enhance sample representation for testing brain-behavior associations and that result in reproducible effect sizes in diverse populations.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.
| | - Lucina Q Uddin
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California; Department of Psychology, University of California Los Angeles, Los Angeles, California
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Arielle Baskin-Sommers
- Department of Psychology, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut
| |
Collapse
|
5
|
Ramduny J, Kelly C. Connectome-based fingerprinting: reproducibility, precision, and behavioral prediction. Neuropsychopharmacology 2024; 50:114-123. [PMID: 39147868 PMCID: PMC11525788 DOI: 10.1038/s41386-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the "functional connectome" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Sipes BS, Nagarajan SS, Raj A. Integrative, segregative, and degenerate harmonics of the structural connectome. Commun Biol 2024; 7:986. [PMID: 39143303 PMCID: PMC11324790 DOI: 10.1038/s42003-024-06669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Unifying integration and segregation in the brain has been a fundamental puzzle in neuroscience ever since the conception of the "binding problem." Here, we introduce a framework that places integration and segregation within a continuum based on a fundamental property of the brain-its structural connectivity graph Laplacian harmonics and a new feature we term the gap-spectrum. This framework organizes harmonics into three regimes-integrative, segregative, and degenerate-that together account for various group-level properties. Integrative and segregative harmonics occupy the ends of the continuum, and they share properties such as reproducibility across individuals, stability to perturbation, and involve "bottom-up" sensory networks. Degenerate harmonics are in the middle of the continuum, and they are subject-specific, flexible, and involve "top-down" networks. The proposed framework accommodates inter-subject variation, sensitivity to changes, and structure-function coupling in ways that offer promising avenues for studying cognition and consciousness in the brain.
Collapse
Affiliation(s)
- Benjamin S Sipes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Lu J, Yan T, Yang L, Zhang X, Li J, Li D, Xiang J, Wang B. Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability. Neuroimage 2024; 295:120651. [PMID: 38788914 DOI: 10.1016/j.neuroimage.2024.120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations. In summary, our proposed framework provides a promising approach to use functional connectivity networks for studying cognition and behavior, promoting a deeper understanding of brain functions.
Collapse
Affiliation(s)
- Jiayu Lu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, 100081, China
| | - Lan Yang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xi Zhang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiaxin Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dandan Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
8
|
Orlichenko A, Qu G, Zhou Z, Liu A, Deng HW, Ding Z, Stephen JM, Wilson TW, Calhoun VD, Wang YP. A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594528. [PMID: 38798580 PMCID: PMC11118390 DOI: 10.1101/2024.05.16.594528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally, many fMRI datasets are restricted to authorized researchers, making dissemination of these valuable data sources challenging. Methods We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics and generate high-quality synthetic fMRI data based on user-supplied demographics. We train and validate our model using two large, widely used datasets, the Philadelphia Neurodevel-opmental Cohort (PNC) and Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP). Results We find that DemoVAE recapitulates group differences in fMRI data while capturing the full breadth of individual variations. Significantly, we also find that most clinical and computerized battery fields that are correlated with fMRI data are not correlated with DemoVAE latents. An exception are several fields related to schizophrenia medication and symptom severity. Conclusion Our model generates fMRI data that captures the full distribution of FC better than traditional VAE or GAN models. We also find that most prediction using fMRI data is dependent on correlation with, and prediction of, demographics. Significance Our DemoVAE model allows for generation of high quality synthetic data conditioned on subject demographics as well as the removal of the confounding effects of demographics. We identify that FC-based prediction tasks are highly influenced by demographic confounds.
Collapse
|
9
|
Orlichenko A, Qu G, Zhou Z, Liu A, Deng HW, Ding Z, Stephen JM, Wilson TW, Calhoun VD, Wang YP. A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds. ARXIV 2024:arXiv:2405.07977v1. [PMID: 38800653 PMCID: PMC11118598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally, many fMRI datasets are restricted to authorized researchers, making dissemination of these valuable data sources challenging. Methods We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics and generate high-quality synthetic fMRI data based on user-supplied demographics. We train and validate our model using two large, widely used datasets, the Philadelphia Neurodevelopmental Cohort (PNC) and Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP). Results We find that DemoVAE recapitulates group differences in fMRI data while capturing the full breadth of individual variations. Significantly, we also find that most clinical and computerized battery fields that are correlated with fMRI data are not correlated with DemoVAE latents. An exception are several fields related to schizophrenia medication and symptom severity. Conclusion Our model generates fMRI data that captures the full distribution of FC better than traditional VAE or GAN models. We also find that most prediction using fMRI data is dependent on correlation with, and prediction of, demographics. Significance Our DemoVAE model allows for generation of high quality synthetic data conditioned on subject demographics as well as the removal of the confounding effects of demographics. We identify that FC-based prediction tasks are highly influenced by demographic confounds.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Ziyu Zhou
- Department of Computer Science, Tulane University, New Orleans, LA 70118
| | - Anqi Liu
- Center for Biomedical Informatics and Genomics, Tulane Integrated Institute of Data & Health Sciences, Tulane University, New Orleans, LA 70112
| | - Hong-Wen Deng
- Center for Biomedical Informatics and Genomics, Tulane Integrated Institute of Data & Health Sciences, Tulane University, New Orleans, LA 70112
| | - Zhengming Ding
- Department of Computer Science, Tulane University, New Orleans, LA 70118
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| |
Collapse
|
10
|
Chumin EJ, Cutts SA, Risacher SL, Apostolova LG, Farlow MR, McDonald BC, Wu YC, Betzel R, Saykin AJ, Sporns O. Edge time series components of functional connectivity and cognitive function in Alzheimer's disease. Brain Imaging Behav 2024; 18:243-255. [PMID: 38008852 PMCID: PMC10844434 DOI: 10.1007/s11682-023-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.
Collapse
Affiliation(s)
- Evgeny J Chumin
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA.
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA.
| | - Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
| | - Shannon L Risacher
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| | - Liana G Apostolova
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Martin R Farlow
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Brenna C McDonald
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| |
Collapse
|
11
|
Zugman A, Ringlein GV, Finn ES, Lewis KM, Berman E, Silverman WK, Lebowitz ER, Pine DS, Winkler AM. Brain Functional Connectivity and Anatomical Features as Predictors of Cognitive Behavioral Therapy Outcome for Anxiety in Youths. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.29.24301959. [PMID: 38352528 PMCID: PMC10862993 DOI: 10.1101/2024.01.29.24301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Because pediatric anxiety disorders precede the onset of many other problems, successful prediction of response to the first-line treatment, cognitive-behavioral therapy (CBT), could have major impact. However, existing clinical models are weakly predictive. The current study evaluates whether structural and resting-state functional magnetic resonance imaging can predict post-CBT anxiety symptoms. Methods Two datasets were studied: (A) one consisted of n=54 subjects with an anxiety diagnosis, who received 12 weeks of CBT, and (B) one consisted of n=15 subjects treated for 8 weeks. Connectome Predictive Modeling (CPM) was used to predict treatment response, as assessed with the PARS; additionally we investigated models using anatomical features, instead of functional connectivity. The main analysis included network edges positively correlated with treatment outcome, and age, sex, and baseline anxiety severity as predictors. Results from alternative models and analyses also are presented. Model assessments utilized 1000 bootstraps, resulting in a 95% CI for R2, r and mean absolute error (MAE). Outcomes The main model showed a mean absolute error of approximately 3.5 (95%CI: [3.1-3.8]) points a R2 of 0.08 [-0.14 - 0.26] and r of 0.38 [0.24 - 0.511]. When testing this model in the left-out sample (B) the results were similar, with a MAE of 3.4 [2.8 - 4.7], R2-0.65 [-2.29 - 0.16] and r of 0.4 [0.24 - 0.54]. The anatomical metrics showed a similar pattern, where models rendered overall low R2. Interpretation The analysis showed that models based on earlier promising results failed to predict clinical outcomes. Despite the small sample size, the current study does not support extensive use of CPM to predict outcome in pediatric anxiety.
Collapse
Affiliation(s)
- Andre Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Grace V. Ringlein
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Emily S. Finn
- Psychological and Brain Sciences, Dartmouth College, 3 Maynard St, Hanover, NH, 03755, USA
| | - Krystal M. Lewis
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Erin Berman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wendy K. Silverman
- Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA
| | - Eli R. Lebowitz
- Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA
| | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Anderson M. Winkler
- Division of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, 1 West University Blvd, Brownsville, TX 78520, USA
| |
Collapse
|
12
|
Mallaroni P, Mason NL, Kloft L, Reckweg JT, van Oorsouw K, Toennes SW, Tolle HM, Amico E, Ramaekers JG. Shared functional connectome fingerprints following ritualistic ayahuasca intake. Neuroimage 2024; 285:120480. [PMID: 38061689 DOI: 10.1016/j.neuroimage.2023.120480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The knowledge that brain functional connectomes are unique and reliable has enabled behaviourally relevant inferences at a subject level. However, whether such "fingerprints" persist under altered states of consciousness is unknown. Ayahuasca is a potent serotonergic psychedelic which produces a widespread dysregulation of functional connectivity. Used communally in religious ceremonies, its shared use may highlight relevant novel interactions between mental state and functional connectome (FC) idiosyncrasy. Using 7T fMRI, we assessed resting-state static and dynamic FCs for 21 Santo Daime members after collective ayahuasca intake in an acute, within-subject study. Here, connectome fingerprinting revealed FCs showed reduced idiosyncrasy, accompanied by a spatiotemporal reallocation of keypoint edges. Importantly, we show that interindividual differences in higher-order FC motifs are relevant to experiential phenotypes, given that they can predict perceptual drug effects. Collectively, our findings offer an example of how individualised connectivity markers can be used to trace a subject's FC across altered states of consciousness.
Collapse
Affiliation(s)
- Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Lilian Kloft
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Kim van Oorsouw
- Department of Forensic Psychology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University Hospital, Goethe University, Frankfurt/Main, Germany
| | | | | | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
13
|
Guan Y, Ma H, Liu J, Xu L, Zhang Y, Tian L. The abilities of movie-watching functional connectivity in individual identifications and individualized predictions. Brain Imaging Behav 2023; 17:628-638. [PMID: 37553449 DOI: 10.1007/s11682-023-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/10/2023]
Abstract
Quite a few studies have been performed based on movie-watching functional connectivity (FC). As compared to its resting-state counterpart, however, there is still much to know about its abilities in individual identifications and individualized predictions. To pave the way for appropriate usage of movie-watching FC, we systemically evaluated the minimum number of time points, as well as the exact functional networks, supporting individual identifications and individualized predictions of apparent traits based on it. We performed the study based on the 7T movie-watching fMRI data included in the HCP S1200 Release, and took IQ as the test case for the prediction analyses. The results indicate that movie-watching FC based on only 15 time points can support successful individual identifications (99.47%), and the connectivity contributed more to identifications were much associated with higher-order cognitive processes (the secondary visual network, the frontoparietal network and the posterior multimodal network). For individualized predictions of IQ, it was found that successful predictions necessitated 60 time points (predicted vs. actual IQ correlation significant at P < 0.05, based on 5,000 permutations), and the prediction accuracy increased logarithmically with the number of time points used for connectivity calculation. Furthermore, the connectivity that contributed more to individual identifications exhibited the strongest prediction ability. Collectively, our findings demonstrate that movie-watching FC can capture rich information about human brain function, and its ability in individualized predictions depends heavily on the length of fMRI scans.
Collapse
Affiliation(s)
- Yun Guan
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044, China
| | - Hao Ma
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiangcong Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Le Xu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yang Zhang
- Department of Orthopedics, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Lixia Tian
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
14
|
Chumin EJ, Cutts SA, Risacher SL, Apostolova LG, Farlow MR, McDonald BC, Wu YC, Betzel R, Saykin AJ, Sporns O. Edge Time Series Components of Functional Connectivity and Cognitive Function in Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.13.23289936. [PMID: 38014005 PMCID: PMC10680898 DOI: 10.1101/2023.05.13.23289936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.
Collapse
Affiliation(s)
- Evgeny J. Chumin
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Sarah A. Cutts
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
| | - Shannon L. Risacher
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Liana G. Apostolova
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Martin R. Farlow
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Brenna C. McDonald
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
| | - Andrew J. Saykin
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| |
Collapse
|
15
|
St-Onge F, Javanray M, Pichet Binette A, Strikwerda-Brown C, Remz J, Spreng RN, Shafiei G, Misic B, Vachon-Presseau É, Villeneuve S. Functional connectome fingerprinting across the lifespan. Netw Neurosci 2023; 7:1206-1227. [PMID: 37781144 PMCID: PMC10473304 DOI: 10.1162/netn_a_00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 10/03/2023] Open
Abstract
Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique "connectome fingerprints," allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort (n = 483 aged 18 to 89 years). We found that individuals are "fingerprintable" (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of "self-identifiability" (within-individual correlation across modalities), and "others-identifiability" (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly.
Collapse
Affiliation(s)
- Frédéric St-Onge
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Mohammadali Javanray
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Jordana Remz
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - R. Nathan Spreng
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Étienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, Canada
| | - Sylvia Villeneuve
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Abbas K, Liu M, Wang M, Duong-Tran D, Tipnis U, Amico E, Kaplan AD, Dzemidzic M, Kareken D, Ances BM, Harezlak J, Goñi J. Tangent functional connectomes uncover more unique phenotypic traits. iScience 2023; 26:107624. [PMID: 37694156 PMCID: PMC10483051 DOI: 10.1016/j.isci.2023.107624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projections, resulting into tangent-FCs. Tangent-FCs have led to more accurate models predicting brain conditions or aging. Motivated by the fact that tangent-FCs seem to be better biomarkers than FCs, we hypothesized that tangent-FCs have also a higher fingerprint. We explored the effects of six factors: fMRI condition, scan length, parcellation granularity, reference matrix, main-diagonal regularization, and distance metric. Our results showed that identification rates are systematically higher when using tangent-FCs across the "fingerprint gradient" (here including test-retest, monozygotic and dizygotic twins). Highest identification rates were achieved when minimally (0.01) regularizing FCs while performing tangent space projection using Riemann reference matrix and using correlation distance to compare the resulting tangent-FCs. Such configuration was validated in a second dataset (resting-state).
Collapse
Affiliation(s)
- Kausar Abbas
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Mintao Liu
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Wang
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Duy Duong-Tran
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Mathematics, United States Naval Academy, Annapolis, MD, USA
| | - Uttara Tipnis
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Alan D. Kaplan
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indiana Alcohol Research Center, Indianapolis, IN, USA
| | - David Kareken
- Department of Neurology, Indiana University School of Medicine, Indiana Alcohol Research Center, Indianapolis, IN, USA
| | - Beau M. Ances
- Department of Neurology, Washington University in Saint Louis, School of Medicine, St Louis, MO, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Joaquín Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Sasse L, Larabi DI, Omidvarnia A, Jung K, Hoffstaedter F, Jocham G, Eickhoff SB, Patil KR. Intermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity. Commun Biol 2023; 6:705. [PMID: 37429937 PMCID: PMC10333234 DOI: 10.1038/s42003-023-05073-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes.
Collapse
Affiliation(s)
- Leonard Sasse
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - Daouia I Larabi
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Amir Omidvarnia
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gerhard Jocham
- Institute for Experimental Psychology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
18
|
Mantwill M, Asseyer S, Chien C, Kuchling J, Schmitz-Hübsch T, Brandt AU, Haynes JD, Paul F, Finke C. Functional connectome fingerprinting and stability in multiple sclerosis. Mult Scler J Exp Transl Clin 2023; 9:20552173231195879. [PMID: 37641618 PMCID: PMC10460476 DOI: 10.1177/20552173231195879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Background Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions. Objective This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals. Methods We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity. Results Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances. Conclusion Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals.
Collapse
Affiliation(s)
- Maron Mantwill
- Maron Mantwill, Hertzbergstraße 12, 12055 Berlin, Germany.
| | - Susanna Asseyer
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Chien
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Charitéplatz, Berlin, Germany
| | - Joseph Kuchling
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexander U Brandt
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - John-Dylan Haynes
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
19
|
Horien C, Greene AS, Shen X, Fortes D, Brennan-Wydra E, Banarjee C, Foster R, Donthireddy V, Butler M, Powell K, Vernetti A, Mandino F, O’Connor D, Lake EMR, McPartland JC, Volkmar FR, Chun M, Chawarska K, Rosenberg MD, Scheinost D, Constable RT. A generalizable connectome-based marker of in-scan sustained attention in neurodiverse youth. Cereb Cortex 2023; 33:6320-6334. [PMID: 36573438 PMCID: PMC10183743 DOI: 10.1093/cercor/bhac506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- MD-PhD Program, Yale School of Medicine, New Haven, CT, United States
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- MD-PhD Program, Yale School of Medicine, New Haven, CT, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Diogo Fortes
- Yale Child Study Center, New Haven, CT, United States
| | | | | | - Rachel Foster
- Yale Child Study Center, New Haven, CT, United States
| | | | | | - Kelly Powell
- Yale Child Study Center, New Haven, CT, United States
| | | | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - David O’Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - James C McPartland
- Yale Child Study Center, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Fred R Volkmar
- Yale Child Study Center, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Marvin Chun
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Katarzyna Chawarska
- Yale Child Study Center, New Haven, CT, United States
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, United States
- Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Yale Child Study Center, New Haven, CT, United States
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
20
|
Krohn S, von Schwanenflug N, Waschke L, Romanello A, Gell M, Garrett DD, Finke C. A spatiotemporal complexity architecture of human brain activity. SCIENCE ADVANCES 2023; 9:eabq3851. [PMID: 36724223 PMCID: PMC9891702 DOI: 10.1126/sciadv.abq3851] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/04/2023] [Indexed: 05/07/2023]
Abstract
The human brain operates in large-scale functional networks. These networks are an expression of temporally correlated activity across brain regions, but how global network properties relate to the neural dynamics of individual regions remains incompletely understood. Here, we show that the brain's network architecture is tightly linked to critical episodes of neural regularity, visible as spontaneous "complexity drops" in functional magnetic resonance imaging signals. These episodes closely explain functional connectivity strength between regions, subserve the propagation of neural activity patterns, and reflect interindividual differences in age and behavior. Furthermore, complexity drops define neural activity states that dynamically shape the connectivity strength, topological configuration, and hierarchy of brain networks and comprehensively explain known structure-function relationships within the brain. These findings delineate a principled complexity architecture of neural activity-a human "complexome" that underpins the brain's functional network organization.
Collapse
Affiliation(s)
- Stephan Krohn
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina von Schwanenflug
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonhard Waschke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Amy Romanello
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Gell
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, RWTH Aachen University, Aachen, Germany
| | - Douglas D. Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Carsten Finke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|