1
|
Jin N, Qian YY, Jiao XF, Wang Z, Li X, Pan W, Jiang JK, Huang P, Wang SY, Jin P, Gao QL, Liu D, Xia Y. Niraparib restricts intraperitoneal metastases of ovarian cancer by eliciting CD36-dependent ferroptosis. Redox Biol 2025; 80:103528. [PMID: 39922130 PMCID: PMC11851289 DOI: 10.1016/j.redox.2025.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025] Open
Abstract
Ovarian cancer (OC) is prone to peritoneum or omentum dissemination, thus giving rise to the formidable challenge of unresectable surgery and a dismal survival rate. Although niraparib holds a pivotal role in the maintenance treatment of OC, its effect on suppressing metastases during primary intervention remains enigmatic. Recently, we initiated a prospective clinical study (NCT04507841) in order to evaluate the therapeutic efficacy of neoadjuvant niraparib monotherapy for advanced OC with homologous recombination deficiency. An analysis of patient tumor burden before and after the niraparib challenge showed a remarkable vulnerability of OC intraperitoneal metastases to niraparib exposure. This killing capacity of niraparib was closely associated with the accumulation of fatty acids within the abdomen, which was confirmed by the increased susceptibility of tumor cells to niraparib treatment in the presence of fatty acids. In the context of abundant fatty acids, niraparib elevated intracellular levels of fatty acids and lipid peroxidation, leading to subsequent tumor cell ferroptosis in a p53 and BRCA-independent manner. Notably, under niraparib exposure, a critical fatty acid transporter CD36 was dramatically upregulated in tumors, facilitating excessive uptake of fatty acids. Pharmacological inhibition of either ferroptosis or CD36 impaired the anti-tumor activity of niraparib both in vitro and in murine intraperitoneal ID8 tumor models. Our findings demonstrate ferroptosis as a novel mechanism underlying the regression of OC metastases induced by niraparib, thereby offering tantalizing prospects for the frontline application of this agent in the management of OC.
Collapse
Affiliation(s)
- Ning Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-yu Qian
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-fei Jiao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Medicine Research Centre of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-kai Jiang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Si-yuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing-lei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Meng F, Yan Y, Zhou L, Zhao S, Sun L, Yu H. Targeting autophagy promotes the antitumor effect of radiotherapy on cervical cancer cells. Cancer Biol Ther 2024; 25:2431136. [PMID: 39635971 PMCID: PMC11622585 DOI: 10.1080/15384047.2024.2431136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Radiotherapy is the mainstay of cancer treatment, and reducing radioresistance is still a poorly explored issue in radiotherapy. Our study was designed to explore the possible functions and mechanisms of autophagy in cervical cancer cells treated with radiotherapy. We discovered that autophagy was activated in C33a and HeLa cervical cancer cells in parallel with increased apoptosis and formation of polyploid giant carcinoma cells (PGCCs) after radiation. Inhibition of autophagy significantly enhances radiation-induced cytotoxicity and apoptosis in cervical cancer cells and reduces PGCCs formation. Immunoblot analysis, as part of the mechanistic experiments, showed that the phosphorylation levels of Akt, mTOR, and P70S6K were downregulated. Thus, our research demonstrated that inhibiting autophagy enhances the antitumor effects of radiation on cervical cancer cells.
Collapse
Affiliation(s)
- Fanjie Meng
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Yan
- Country Department of Radiotherapy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li Zhou
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Song Zhao
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
Popova LV, Garfinkle EAR, Chopyk DM, Navarro JB, Rivaldi A, Shu Y, Lomonosova E, Phay JE, Miller BS, Sattuwar S, Mullen M, Mardis ER, Miller KE, Dedhia PH. Single Nuclei Sequencing Reveals Intratumoral Cellular Heterogeneity and Replication Stress in Adrenocortical Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615695. [PMID: 39554059 PMCID: PMC11565910 DOI: 10.1101/2024.09.30.615695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis and limited treatment options. Bulk genomic characterization of ACC has not yielded obvious therapeutic or immunotherapeutic targets, yet novel therapies are needed. We hypothesized that elucidating the intratumoral cellular heterogeneity by single nuclei RNA sequencing analyses would yield insights into potential therapeutic vulnerabilities of this disease. In addition to characterizing the immune cell and fibroblast landscape, our analyses of single nuclei gene expression profiles identified an adrenal cortex cell cluster exhibiting a program of replication stress and DNA damage response in primary and metastatic ACC. In vitro assessment of replication stress and DNA damage response using an ACC cell line and a series of newly-derived hormonally active patient-derived tumor organoids revealed ATR sensitivity. These findings provide novel mechanistic insight into ACC biology and suggest that an underlying dependency on ATR may be leveraged therapeutically in advanced ACC.
Collapse
|
4
|
Santiago-O’Farrill JM, Blessing Bollu A, Yang H, Orellana V, Pina M, Zhang X, Liu J, Bast RC, Lu Z. Crizotinib Enhances PARP Inhibitor Efficacy in Ovarian Cancer Cells and Xenograft Models by Inducing Autophagy. Mol Cancer Res 2024; 22:840-851. [PMID: 38780897 PMCID: PMC11372360 DOI: 10.1158/1541-7786.mcr-23-0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) can encounter resistance through various mechanisms, limiting their effectiveness. Our recent research showed that PARPi alone can induce drug resistance by promoting autophagy. Moreover, our studies have revealed that anaplastic lymphoma kinase (ALK) plays a role in regulating the survival of ovarian cancer cells undergoing autophagy. Here, we explored whether the ALK-inhibitor crizotinib could enhance the efficacy of PARPi by targeting drug-induced autophagic ovarian cancer cell and xenograft models. Our investigation demonstrates that crizotinib enhances the anti-tumor activity of PARPi across multiple ovarian cancer cells. Combination therapy with crizotinib and olaparib reduced cell viability and clonogenic growth in two-olaparib resistant cell lines. More importantly, this effect was consistently observed in patient-derived organoids. Furthermore, combined treatment with crizotinib and olaparib led to tumor regression in human ovarian xenograft models. Mechanistically, the combination resulted in increased levels of reactive oxygen species (ROS), induced DNA damage, and decreased the phosphorylation of AKT, mTOR, and ULK-1, contributing to increased olaparib-induced autophagy and apoptosis. Notably, pharmacologic, or genetic inhibition or autophagy reduced the sensitivity of ovarian cancer cell lines to olaparib and crizotinib treatment, underscoring the role of autophagy in cell death. Blocking ROS mitigated olaparib/crizotinib-induced autophagy and cell death while restoring levels of phosphorylated AKT, mTOR and ULK-1. These findings suggest that crizotinib can improve the therapeutic efficacy of olaparib by enhancing autophagy. Implications: The combination of crizotinib and PARPi presents a promising strategy, that could provide a novel approach to enhance outcomes for patients with ovarian cancer.
Collapse
Affiliation(s)
| | - Alicia Blessing Bollu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Vivian Orellana
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Marc Pina
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Xudong Zhang
- Department of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jinsong Liu
- Department of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
5
|
Clark A, Villarreal MR, Huang SB, Jayamohan S, Rivas P, Hussain SS, Ybarra M, Osmulski P, Gaczynska ME, Shim EY, Smith T, Gupta YK, Yang X, Delma CR, Natarajan M, Lai Z, Wang LJ, Michalek JE, Higginson DS, Ikeno Y, Ha CS, Chen Y, Ghosh R, Kumar AP. Targeting S6K/NFκB/SQSTM1/Polθ signaling to suppress radiation resistance in prostate cancer. Cancer Lett 2024; 597:217063. [PMID: 38925361 DOI: 10.1016/j.canlet.2024.217063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In this study we have identified POLθ-S6K-p62 as a novel druggable regulator of radiation response in prostate cancer. Despite significant advances in delivery, radiotherapy continues to negatively affect treatment outcomes and quality of life due to resistance and late toxic effects to the surrounding normal tissues such as bladder and rectum. It is essential to develop new and effective strategies to achieve better control of tumor. We found that ribosomal protein S6K (RPS6KB1) is elevated in human prostate tumors, and contributes to resistance to radiation. As a downstream effector of mTOR signaling, S6K is known to be involved in growth regulation. However, the impact of S6K signaling on radiation response has not been fully explored. Here we show that loss of S6K led to formation of smaller tumors with less metastatic ability in mice. Mechanistically we found that S6K depletion reduced NFκB and SQSTM1 (p62) reporter activity and DNA polymerase θ (POLθ) that is involved in alternate end-joining repair. We further show that the natural compound berberine interacts with S6K in a in a hitherto unreported novel mode and that pharmacological inhibition of S6K with berberine reduces Polθ and downregulates p62 transcriptional activity via NFκB. Loss of S6K or pre-treatment with berberine improved response to radiation in prostate cancer cells and prevented radiation-mediated resurgence of PSA in animals implanted with prostate cancer cells. Notably, silencing POLQ in S6K overexpressing cells enhanced response to radiation suggesting S6K sensitizes prostate cancer cells to radiation via POLQ. Additionally, inhibition of autophagy with CQ potentiated growth inhibition induced by berberine plus radiation. These observations suggest that pharmacological inhibition of S6K with berberine not only downregulates NFκB/p62 signaling to disrupt autophagic flux but also decreases Polθ. Therefore, combination treatment with radiation and berberine inhibits autophagy and alternate end-joining DNA repair, two processes associated with radioresistance leading to increased radiation sensitivity.
Collapse
Affiliation(s)
- Alison Clark
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Michelle R Villarreal
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Shih-Bo Huang
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Sridharan Jayamohan
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Paul Rivas
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Suleman S Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meagan Ybarra
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Pawel Osmulski
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Maria E Gaczynska
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Eun Yong Shim
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Tyler Smith
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Yogesh K Gupta
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Department of Biochemistry and Structural Biology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Xiaoyu Yang
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Caroline R Delma
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Mohan Natarajan
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Zhao Lai
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Li-Ju Wang
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Joel E Michalek
- Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Epidemiology and Biostatistics, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuji Ikeno
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Barshop Institute for Longevity and Aging Studies, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Audie L. Murphy VA Hospital (STVHCS), Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Chul Soo Ha
- Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Department of Radiation Oncology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Yidong Chen
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Rita Ghosh
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Urology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Pharmacology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA.
| | - Addanki P Kumar
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Urology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Pharmacology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Audie L. Murphy VA Hospital (STVHCS), Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA.
| |
Collapse
|
6
|
Fu F, Yu Y, Zou B, Long Y, Wu L, Yin J, Zhou Q. Role of actin-binding proteins in prostate cancer. Front Cell Dev Biol 2024; 12:1430386. [PMID: 39055653 PMCID: PMC11269120 DOI: 10.3389/fcell.2024.1430386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The molecular mechanisms driving the onset and metastasis of prostate cancer remain poorly understood. Actin, under the control of actin-binding proteins (ABPs), plays a crucial role in shaping the cellular cytoskeleton, which in turn supports the morphological alterations in normal cells, as well as the invasive spread of tumor cells. Previous research indicates that ABPs of various types serve distinct functions, and any disruptions in their activities could predispose individuals to prostate cancer. These ABPs are intricately implicated in the initiation and advancement of prostate cancer through a complex array of intracellular processes, such as severing, linking, nucleating, inducing branching, assembling, facilitating actin filament elongation, terminating elongation, and promoting actin molecule aggregation. As such, this review synthesizes existing literature on several ABPs linked to prostate cancer, including cofilin, filamin A, and fascin, with the aim of shedding light on the molecular mechanisms through which ABPs influence prostate cancer development and identifying potential therapeutic targets. Ultimately, this comprehensive examination seeks to contribute to the understanding and management of prostate diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Su H, Chen Y, Lin F, Li W, Gu X, Zeng W, Liu D, Li M, Zhong S, Chen Q, Chen Q. Establishment of a lysosome-related prognostic signature in breast cancer to predict immune infiltration and therapy response. Front Oncol 2023; 13:1325452. [PMID: 38162504 PMCID: PMC10757638 DOI: 10.3389/fonc.2023.1325452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Background Lysosomes are instrumental in intracellular degradation and recycling, with their functional alterations holding significance in tumor growth. Nevertheless, the precise role of lysosome-related genes (LRGs) in breast cancer (BC) remains elucidated. This study aimed to establish a prognostic model for BC based on LRGs. Methods Employing The Cancer Genome Atlas (TCGA) BC cohort as a training dataset, this study identified differentially expressed lysosome-related genes (DLRGs) through intersecting LRGs with differential expression genes (DEGs) between tumor and normal samples. A prognostic model of BC was subsequently developed using Cox regression analysis and validated within two Gene Expression Omnibus (GEO) external validation sets. Further analyses explored functional pathways, the immune microenvironment, immunotherapeutic responses, and sensitivity to chemotherapeutic drugs in different risk groups. Additionally, the mRNA and protein expression levels of genes within the risk model were examined by utilizing the Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) databases. Clinical tissue specimens obtained from patients were gathered to validate the expression of the model genes via Real-Time Polymerase Chain Reaction (RT-PCR). Results We developed a risk model of BC based on five specific genes (ATP6AP1, SLC7A5, EPDR1, SDC1, and PIGR). The model was validated for overall survival (OS) in two GEO validation sets (p=0.00034 for GSE20685 and p=0.0095 for GSE58812). In addition, the nomogram incorporating clinical factors showed better predictive performance. Compared to the low-risk group, the high-risk group had a higher level of certain immune cell infiltration, including regulatory T cells (Tregs) and type 2 T helper cells (Th2). The high-risk patients appeared to respond less well to general immunotherapy and chemotherapeutic drugs, according to the Tumor Immune Dysfunction and Exclusion (TIDE), Immunophenotype Score (IPS), and drug sensitivity scores. The RT-PCR results validated the expression trends of some prognostic-related genes in agreement with the previous differential expression analysis. Conclusion Our innovative lysosome-associated signature can predict the prognosis for BC patients, offering insights for guiding subsequent immunotherapeutic and chemotherapeutic interventions. Furthermore, it has the potential to provide a scientific foundation for identifying prospective therapeutic targets.
Collapse
Affiliation(s)
- Hairong Su
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengye Lin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangyu Gu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijie Zeng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dan Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Man Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowen Zhong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qubo Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Yi J, Luo X, Xing J, Gedanken A, Lin X, Zhang C, Qiao G. Micelle encapsulation zinc-doped copper oxide nanocomposites reverse Olaparib resistance in ovarian cancer by disrupting homologous recombination repair. Bioeng Transl Med 2023; 8:e10507. [PMID: 37206208 PMCID: PMC10189445 DOI: 10.1002/btm2.10507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/22/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2024] Open
Abstract
Micelle Encapsulation Zinc-doped copper oxide nanocomposites (MEnZn-CuO NPs) is a novel doped metal nanomaterial prepared by our group based on Zinc doped copper oxide nanocomposites (Zn-CuO NPs) using non-micellar beam. Compared with Zn-CuO NPs, MEnZn-CuO NPs have uniform nanoproperties and high stability. In this study, we explored the anticancer effects of MEnZn-CuO NPs on human ovarian cancer cells. In addition to affecting cell proliferation, migration, apoptosis and autophagy, MEnZn-CuO NPs have a greater potential for clinical application by inducing HR repair defects in ovarian cancer cells in combination with poly (ADP-ribose) polymerase inhibitors for lethal effects.
Collapse
Affiliation(s)
- Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xin Luo
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key LaboratorySouthwest Medical UniversityLuzhouSichuan646000China
| | - Jinshan Xing
- Department of NeurosurgeryThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuan646000China
| | - Aharon Gedanken
- Center for Advanced Materials and NanotechnologyBar‐Ilan UniversityRamat Gan52900Israel
| | - Xiukun Lin
- College of Marine SciencesBeibu Gulf University12 Binhai RoadQinzhou535011GuangxiChina
| | - Chunxiang Zhang
- Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouSichuan646000China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key LaboratorySouthwest Medical UniversityLuzhouSichuan646000China
- School of Pharmacy, Central Nervous System Drug Key Laboratory of Sichuan Province, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000SichuanChina
| |
Collapse
|
10
|
Zheng R, Yu Y, Lv L, Zhang Y, Deng H, Li J, Zhang B. m 6A reader HNRNPA2B1 destabilization of ATG4B regulates autophagic activity, proliferation and olaparib sensitivity in breast cancer. Exp Cell Res 2023; 424:113487. [PMID: 36693492 DOI: 10.1016/j.yexcr.2023.113487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
N6-methyladenosine RNA (m6A) is the most extensive epigenetic modification in mRNA and influences tumor progression. However, the role of m6A regulators and specific mechanisms in breast cancer still need further study. Here, we investigated the significance of the m6A reader HNRNPA2B1 and explored its influence on autophagy and drug sensitivity in breast cancer. HNRNPA2B1 was selected by bioinformatics analysis, and its high expression level was identified in breast cancer tissues and cell lines. HNRNPA2B1 was related to poor prognosis. Downregulation of HNRNPA2B1 reduced proliferation, enhanced autophagic flux, and partially reversed de novo resistance to olaparib in breast cancer. ATG4B was determined by RIP and MeRIP assays as a downstream gene of HNRNPA2B1, by which recognized the m6A site in the 3'UTR. Overexpression of ATG4B rescued the malignancy driven by HNRNPA2B1 in breast cancer cells and increased the olaparib sensitivity. Our study revealed that the m6A reader HNRNPA2B1 mediated proliferation and autophagy in breast cancer cell lines by facilitating ATG4B mRNA decay and targeting HNRNPA2B1/m6A/ATG4B might enhance the olaparib sensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Renjing Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Province, 430022, People's Republic of China
| | - Yuanhang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Province, 430022, People's Republic of China
| | - Lianqiu Lv
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Province, 430022, People's Republic of China
| | - Yue Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Province, 430022, People's Republic of China
| | - Huifang Deng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Province, 430022, People's Republic of China
| | - Jiyong Li
- Department of Breast and Thyroid Surgery, Huangpi People's Hospital, Jianghan University, Wuhan Province, 430300, People's Republic of China
| | - Bo Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Province, 430022, People's Republic of China.
| |
Collapse
|
11
|
Pixelated Microfluidics for Drug Screening on Tumour Spheroids and Ex Vivo Microdissected Tumour Explants. Cancers (Basel) 2023; 15:cancers15041060. [PMID: 36831403 PMCID: PMC9954565 DOI: 10.3390/cancers15041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Anticancer drugs have the lowest success rate of approval in drug development programs. Thus, preclinical assays that closely predict the clinical responses to drugs are of utmost importance in both clinical oncology and pharmaceutical research. 3D tumour models preserve the tumoral architecture and are cost- and time-efficient. However, the short-term longevity, limited throughput, and limitations of live imaging of these models have so far driven researchers towards less realistic tumour models such as monolayer cell cultures. Here, we present an open-space microfluidic drug screening platform that enables the formation, culture, and multiplexed delivery of several reagents to various 3D tumour models, namely cancer cell line spheroids and ex vivo primary tumour fragments. Our platform utilizes a microfluidic pixelated chemical display that creates isolated adjacent flow sub-units of reagents, which we refer to as fluidic 'pixels', over tumour models in a contact-free fashion. Up to nine different treatment conditions can be tested over 144 samples in a single experiment. We provide a proof-of-concept application by staining fixed and live tumour models with multiple cellular dyes. Furthermore, we demonstrate that the response of the tumour models to biological stimuli can be assessed using the platform. Upscaling the microfluidic platform to larger areas can lead to higher throughputs, and thus will have a significant impact on developing treatments for cancer.
Collapse
|
12
|
Development of Olaparib-Resistance Prostate Cancer Cell Lines to Identify Mechanisms Associated with Acquired Resistance. Cancers (Basel) 2022; 14:cancers14163877. [PMID: 36010871 PMCID: PMC9405809 DOI: 10.3390/cancers14163877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary PARP inhibitors (PARPi; olaparib) are presently in clinical trials for advanced prostate cancer (PC). Resistance mechanisms are not fully understood in PC compared to ovarian and breast cancers. Our study aimed to identify new molecular mechanisms that affect acquired olaparib-resistance. We developed new resistant PC cell line models derived from original PC cell lines. We identified that DNA repair, autophagy, and the Rho-associated coiled-coil containing protein kinase 2 (ROCK2) could be potential targets to reverse the acquired olaparib-resistance. Abstract Background: Poly (ADP-ribose) polymerase inhibitors (PARPi) were initially deployed to target breast and ovarian tumors with mutations in DNA damage response genes. Recently, PARPi have been shown to be beneficial in the treatment of prostate cancer (PC) patients having exhausted conventional therapeutics. Despite demonstrating promising response rates, all patients treated with PARPi eventually develop resistance. However, PARPi resistance in PC is not well understood, and further studies are required to understand PARPi resistance in PC to propose strategies to circumvent resistance. Methods: Starting from well-established olaparib-sensitive PC cell lines (LNCaP, C4-2B and DU145), we derived olaparib-resistant (OR) PC cell lines and performed a microarray analysis. Results: The olaparib IC50 values of OR cell lines increased significantly as compared to the parental cell lines. Gene expression analyses revealed that different pathways, including DNA repair, cell cycle regulation and autophagy, were affected by acquired resistance. A total of 195 and 87 genes were significantly upregulated and downregulated, respectively, in all three OR cell lines compared to their parental counterparts. Among these genes, we selected BRCC3, ROCK2 and ATG2B for validation. We showed that ROCK2 expression, basal autophagy and homologous recombination (HR) efficiency were increased in all OR cell lines. Conclusions: Our study provides a new in vitro model to study PARPi resistance in PC and suggests new possible targets to reverse resistance and prolong the benefits of PARPi treatment.
Collapse
|
13
|
Ipsen MB, Sørensen EMG, Thomsen EA, Weiss S, Haldrup J, Dalby A, Palmfeldt J, Bross P, Rasmussen M, Fredsøe J, Klingenberg S, Jochumsen MR, Bouchelouche K, Ulhøi BP, Borre M, Mikkelsen JG, Sørensen KD. A genome-wide CRISPR-Cas9 knockout screen identifies novel PARP inhibitor resistance genes in prostate cancer. Oncogene 2022; 41:4271-4281. [PMID: 35933519 DOI: 10.1038/s41388-022-02427-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022]
Abstract
DNA repair gene mutations are frequent in castration-resistant prostate cancer (CRPC), suggesting eligibility for poly(ADP-ribose) polymerase inhibitor (PARPi) treatment. However, therapy resistance is a major clinical challenge and genes contributing to PARPi resistance are poorly understood. Using a genome-wide CRISPR-Cas9 knockout screen, this study aimed at identifying genes involved in PARPi resistance in CRPC. Based on the screen, we identified PARP1, and six novel candidates associated with olaparib resistance upon knockout. For validation, we generated multiple knockout populations/clones per gene in C4 and/or LNCaP CRPC cells, which confirmed that loss of PARP1, ARH3, YWHAE, or UBR5 caused olaparib resistance. PARP1 or ARH3 knockout caused cross-resistance to other PARPis (veliparib and niraparib). Furthermore, PARP1 or ARH3 knockout led to reduced autophagy, while pharmacological induction of autophagy partially reverted their PARPi resistant phenotype. Tumor RNA sequencing of 126 prostate cancer patients identified low ARH3 expression as an independent predictor of recurrence. Our results advance the understanding of PARPi response by identifying four novel genes that contribute to PARPi sensitivity in CRPC and suggest a new model of PARPi resistance through decreased autophagy.
Collapse
Affiliation(s)
- Malene Blond Ipsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ea Marie Givskov Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Simone Weiss
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Bross
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Klingenberg
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Mads R Jochumsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Kirsten Bouchelouche
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|