1
|
Degen J, Storms M, Lee CB, Jechow A, Stöckl AL, Hölker F, Jakhar A, Walter T, Walter S, Mitesser O, Hovestadt T, Degen T. Shedding light with harmonic radar: Unveiling the hidden impacts of streetlights on moth flight behavior. Proc Natl Acad Sci U S A 2024; 121:e2401215121. [PMID: 39378094 PMCID: PMC11494349 DOI: 10.1073/pnas.2401215121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/31/2024] [Indexed: 10/10/2024] Open
Abstract
One of the most dramatic changes occurring on our planet is the ever-increasing extensive use of artificial light at night, which drastically altered the environment to which nocturnal animals are adapted. Such light pollution has been identified as a driver in the dramatic insect decline of the past years. One nocturnal species group experiencing marked declines are moths, which play a key role in food webs and ecosystem services such as plant pollination. Moths can be easily monitored within the illuminated area of a streetlight, where they typically exhibit disoriented behavior. Yet, little is known about their behavior beyond the illuminated area. Harmonic radar tracking enabled us to close this knowledge gap. We found a significant change in flight behavior beyond the illuminated area of a streetlight. A detailed analysis of the recorded trajectories revealed a barrier effect of streetlights on lappet moths whenever the moon was not available as a natural celestial cue. Furthermore, streetlights increased the tortuosity of flights for both hawk moths and lappet moths. Surprisingly, we had to reject our fundamental hypothesis that most individuals would fly toward a streetlight. Instead, this was true for only 4% of the tested individuals, indicating that the impact of light pollution might be more severe than assumed to date. Our results provide experimental evidence for the fragmentation of landscapes by streetlights and demonstrate that light pollution affects movement patterns of moths beyond what was previously assumed, potentially affecting their reproductive success and hampering a vital ecosystem service.
Collapse
Affiliation(s)
- Jacqueline Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Mona Storms
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Chengfa Benjamin Lee
- Department of Remote Sensing, University of Würzburg, Würzburg97074, Germany
- Photogrammetry and Image Analysis Department, German Aerospace Center, Remote Sensing Technology Institute, Berlin12489, Germany
| | - Andreas Jechow
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel14770, Germany
| | - Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz78464, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz78457, Germany
- Zukunftskolleg, University of Konstanz, Konstanz78457, Germany
| | - Franz Hölker
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Aryan Jakhar
- Department of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram695551, India
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
- Institute at Brown for Environment and Society, Brown University, Providence, RI02912
| | - Thomas Walter
- Department of Computer Science, University of Würzburg, Würzburg97074, Germany
| | - Stefan Walter
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Oliver Mitesser
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Tobias Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| |
Collapse
|
2
|
Burke LM, Davies TW, Wilcockson D, Jenkins S, Ellison A. Artificial light and cloud cover interact to disrupt celestial migrations at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173790. [PMID: 38851339 DOI: 10.1016/j.scitotenv.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The growth of human activity and infrastructure has led to an unprecedented rise in the use of Artificial Light at Night (ALAN) with demonstrable impacts on ecological communities and ecosystem services. However, there remains very little information on how ALAN interacts with or obscures light from celestial bodies, which provide vital orientating cues in a number of species. Furthermore, no studies to date have examined how climatic conditions such as cloud cover, known to influence the intensity of skyglow, interact with lunar irradiance and ALAN over the course of a lunar cycle to alter migratory abilities of species. Our night-time field study aimed to establish how lunar phase and climatic conditions (cloud cover) modulate the impact of ALAN on the abundance and migratory behaviour of Talitrus saltator, a key sandy beach detritivore which uses multiple light associated cues during nightly migrations. Our results showed that the number and size of individuals caught decreased significantly as ALAN intensity increased. Additionally, when exposed to ALAN more T. saltator were caught travelling parallel to the shoreline, indicating that the presence of ALAN is inhibiting their ability to navigate along their natural migration route, potentially impacting the distribution of the population. We found that lunar phase and cloud cover play a significant role in modifying the impact of ALAN, highlighting the importance of incorporating natural light cycles and climatic conditions when investigating ALAN impacts. Critically we demonstrate that light levels as low as 3 lx can have substantial effects on coastal invertebrate distributions. Our results provide the first evidence that ALAN impacted celestial migration can lead to changes to the distribution of a species.
Collapse
Affiliation(s)
- Leo M Burke
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK.
| | - Thomas W Davies
- University of Plymouth, School of Biological and Marine Sciences, Drake Circus, Plymouth PL4 8AA, UK
| | - David Wilcockson
- Aberystwyth University, Department of Life Sciences, Edward Llywd Building, Aberystwyth SY23 3DA, UK
| | - Stuart Jenkins
- Bangor University, School of Ocean Sciences, Menai Bridge LL59 5AB, UK
| | - Amy Ellison
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK
| |
Collapse
|
3
|
Williams HJ, Sridhar VH, Hurme E, Gall GE, Borrego N, Finerty GE, Couzin ID, Galizia CG, Dominy NJ, Rowland HM, Hauber ME, Higham JP, Strandburg-Peshkin A, Melin AD. Sensory collectives in natural systems. eLife 2023; 12:e88028. [PMID: 38019274 PMCID: PMC10686622 DOI: 10.7554/elife.88028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.
Collapse
Affiliation(s)
- Hannah J Williams
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Vivek H Sridhar
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Edward Hurme
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Gabriella E Gall
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | | | | | - Iain D Couzin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - C Giovanni Galizia
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | - Nathaniel J Dominy
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, Dartmouth CollegeHanoverUnited States
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical EcologyJenaGermany
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-ChampaignUrbana-ChampaignUnited States
| | - James P Higham
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Ariana Strandburg-Peshkin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Amanda D Melin
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology and Archaeology, University of CalgaryCalgaryCanada
- Alberta Children’s Hospital Research Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
4
|
Degen T, Kolláth Z, Degen J. X,Y, and Z: A bird's eye view on light pollution. Ecol Evol 2022; 12:e9608. [PMID: 36540078 PMCID: PMC9754910 DOI: 10.1002/ece3.9608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
The global increase in light pollution is being viewed with growing concern, as it has been reported to have negative effects ranging from the individual to the ecosystem level.Unlike movement on the ground, flying and swimming allows vertical motion. Here, we demonstrate that flight altitude change is crucial to the perception and susceptibility of artificial light at night of air-borne organisms. Because air-borne species can propagate through the airspace and easily across ecotones, effects might not be small-scale. Therefore, we propose including airspace as a vital habitat in the concept of ecological light pollution.The interplay between flight altitude and the effects of light pollution may not only be crucial for understanding flying species but may also provide valuable insights into the mechanisms of responses to artificial light at night in general.
Collapse
Affiliation(s)
- Tobias Degen
- Department of Zoology IIIUniversity of WürzburgWürzburgGermany
- Department of Zoology IIUniversity of WürzburgWürzburgGermany
| | - Zoltán Kolláth
- Department of PhysicsEszterházy Károly Catholic UniversityEgerHungary
| | | |
Collapse
|
5
|
Nilsson DE, Smolka J, Bok M. The vertical light-gradient and its potential impact on animal distribution and behavior. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.951328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The visual environment provides vital cues allowing animals to assess habitat quality, weather conditions or measure time of day. Together with other sensory cues and physiological conditions, the visual environment sets behavioral states that make the animal more prone to engage in some behaviors, and less in others. This master-control of behavior serves a fundamental and essential role in determining the distribution and behavior of all animals. Although it is obvious that visual information contains vital input for setting behavioral states, the precise nature of these visual cues remains unknown. Here we use a recently described method to quantify the distribution of light reaching animals’ eyes in different environments. The method records the vertical gradient (as a function of elevation angle) of intensity, spatial structure and spectral balance. Comparison of measurements from different types of environments, weather conditions, times of day, and seasons reveal that these aspects can be readily discriminated from one another. The vertical gradients of radiance, spatial structure (contrast) and color are thus reliable indicators that are likely to have a strong impact on animal behavior and spatial distribution.
Collapse
|