1
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
2
|
Kornfeld-Sylla SS, Gelegen C, Norris JE, Chaloner FA, Lee M, Khela M, Heinrich MJ, Finnie PSB, Ethridge LE, Erickson CA, Schmitt LM, Cooke SF, Wilkinson CL, Bear MF. A human electrophysiological biomarker of Fragile X Syndrome is shared in V1 of Fmr1 KO mice and caused by loss of FMRP in cortical excitatory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644144. [PMID: 40166357 PMCID: PMC11957138 DOI: 10.1101/2025.03.19.644144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Predicting clinical therapeutic outcomes from preclinical animal studies remains an obstacle to developing treatments for neuropsychiatric disorders. Electrophysiological biomarkers analyzed consistently across species could bridge this divide. In humans, alpha oscillations in the resting state electroencephalogram (rsEEG) are altered in many disorders, but these disruptions have not yet been characterized in animal models. Here, we employ a uniform analytical method to show in males with fragile X syndrome (FXS) that the slowed alpha oscillations observed in adults are also present in children and in visual cortex of adult and juvenile Fmr1 -/y mice. We find that alpha-like oscillations in mice reflect the differential activity of two classes of inhibitory interneurons, but the phenotype is caused by deletion of Fmr1 specifically in cortical excitatory neurons. These results provide a framework for studying alpha oscillation disruptions across species, advance understanding of a critical rsEEG signature in the human brain and inform the cellular basis for a putative biomarker of FXS.
Collapse
|
3
|
Lu L, Sarkar AK, Dao L, Liu Y, Ma C, Thwin PH, Chang X, Yoshida G, Li A, Wang C, Westerkamp C, Schmitt L, Chelsey M, Stephanie M, Zhao Y, Liu Y, Wang X, Zhu LQ, Liu D, Tchieu J, Miyakoshi M, Zhu H, Gross C, Pedapati E, Salomonis N, Erickson C, Guo Z. An iPSC model of fragile X syndrome reflects clinical phenotypes and reveals m 6 A- mediated epi-transcriptomic dysregulation underlying synaptic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.14.618205. [PMID: 39464060 PMCID: PMC11507714 DOI: 10.1101/2024.10.14.618205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from FMR1 gene silencing and loss of the FMRP protein. N6-methyladenosine (m 6 A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m 6 A-containing transcripts. However, how loss of FMRP impacts on transcriptome-wide m 6 A modifications in FXS patients remains unknown. To answer this question, we generated cortical neurons differentiated from induced pluripotent stem cells (iPSC) derived from healthy subjects and FXS patients. In electrophysiology recordings, we validated that synaptic and neuronal network defects in iPSC-derived FXS neurons corresponded to the clinical EEG data of the patients from which the corresponding iPSC line was derived. In analysis of transcriptome-wide methylation, we show that FMRP deficiency led to increased translation of m 6 A writers, resulting in hypermethylation that primarily affecting synapse-associated transcripts and increased mRNA decay. Conversely, in the presence of an m 6 A writer inhibitor, synaptic defects in FXS neurons were rescued. Taken together, our findings uncover that an FMRP-dependent epi-transcriptomic mechanism contributes to FXS pathogenesis by disrupting m 6 A modifications in FXS, suggesting a promising avenue for m 6 A- targeted therapies.
Collapse
|
4
|
Janz P, Bainier M, Marashli S, Gross S, Redondo RL. Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice. Neuropharmacology 2025; 262:110182. [PMID: 39396738 DOI: 10.1016/j.neuropharm.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
5
|
McKinney WS, Schmitt LM, De Stefano LA, Ethridge L, Norris JE, Horn PS, Dauterman S, Rosselot H, Pedapati EV, Reisinger DL, Dominick KC, Shaffer RC, Chin D, Friedman NR, Hong M, Sweeney JA, Erickson C. Results from a Double-Blind, Randomized, Placebo-Controlled, Single-Dose, Crossover Trial of Lovastatin or Minocycline in Fragile X Syndrome. J Child Adolesc Psychopharmacol 2024. [PMID: 39651602 DOI: 10.1089/cap.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Introduction: Treatment studies in FMR1 knockout rodent models have found that minocycline and lovastatin each improve synaptic, neurological, and behavioral functioning, and open-label chronic dosing studies in human patients with fragile X syndrome (FXS) have demonstrated modest clinical improvements. Findings from blinded studies are mixed, and there is a limited understanding of electrophysiological target engagement that would facilitate cross-species translational studies. Smaller-scale, acute (e.g., single-dose) drug studies may speed treatment identification by detecting subtle electrophysiological and behavioral changes. Materials and Methods: Twenty-nine participants with FXS (31% female) ages 15-45 years completed a randomized, double-blind, crossover study in which they received a single oral dose of 40 mg of lovastatin, 270 mg of minocycline, or placebo, with a 2-week washout period between dosing visits. Participants completed a comprehensive neuropsychological battery and three EEG paradigms (resting state; auditory chirp; auditory habituation) before and 4 hours after dosing. Results: No serious adverse events were reported, and both drugs were well-tolerated. Compared with placebo, there were no overall treatment effects for any outcomes, including EEG, but several modest drug responses varied as a function of sex and age. Lovastatin treatment was associated with improved spatial awareness in older participants and females compared with minocycline and placebo. Discussion: We show that single-dose drug studies are highly feasible in FXS and that patients with FXS can complete a range of EEG and behavioral tasks, many of which have been shown to be reliable and may therefore be sensitive to subtle drug target engagement. Conclusions: Acute single doses of lovastatin or minocycline did not lead to changes in electrophysiological or performance-based measures. This may be due to the limited effects of these drugs in human patients or limited acute effects relative to chronic dosing. However, the study design was further validated for use in neurodevelopmental populations.
Collapse
Affiliation(s)
- Walker S McKinney
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren M Schmitt
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shelby Dauterman
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Debra L Reisinger
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebecca C Shaffer
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Danielle Chin
- The Heidt Center of Excellence, Cincinnati, Ohio, USA
| | - Nicole R Friedman
- Department of Psychology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Michael Hong
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Ethridge LE, Pedapati EV, Schmitt LM, Norris JE, Auger E, De Stefano LA, Sweeney JA, Erickson CA. Validating brain activity measures as reliable indicators of individual diagnostic group and genetically mediated sub-group membership Fragile X Syndrome. Sci Rep 2024; 14:22982. [PMID: 39362936 PMCID: PMC11450163 DOI: 10.1038/s41598-024-72935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined posterior-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses for resting EEG best discriminated non-mosaic FXS males via frontal theta resting relative power (AUC = 0.8759), even with data reduced to a 20-channel clinical montage (AUC = 0.9062). In the chirp task, FXS females and non-mosaic males were nearly perfectly discriminated by combined theta, alpha, and gamma power (AUC = 0.9444) and a combination of all variables (AUC = 0.9610), respectively. Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.
Collapse
Affiliation(s)
- Lauren E Ethridge
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA.
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ernest V Pedapati
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Emma Auger
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
Erickson CA, Perez-Cano L, Pedapati EV, Painbeni E, Bonfils G, Schmitt LM, Sachs H, Nelson M, De Stefano L, Westerkamp G, de Souza ALS, Pohl O, Laufer O, Issachar G, Blaettler T, Hyvelin JM, Durham LA. Safety, Tolerability, and EEG-Based Target Engagement of STP1 (PDE3,4 Inhibitor and NKCC1 Antagonist) in a Randomized Clinical Trial in a Subgroup of Patients with ASD. Biomedicines 2024; 12:1430. [PMID: 39062003 PMCID: PMC11274259 DOI: 10.3390/biomedicines12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to evaluate the safety and tolerability of STP1, a combination of ibudilast and bumetanide, tailored for the treatment of a clinically and biologically defined subgroup of patients with Autism Spectrum Disorder (ASD), namely ASD Phenotype 1 (ASD-Phen1). We conducted a randomized, double-blind, placebo-controlled, parallel-group phase 1b study with two 14-day treatment phases (registered at clinicaltrials.gov as NCT04644003). Nine ASD-Phen1 patients were administered STP1, while three received a placebo. We assessed safety and tolerability, along with electrophysiological markers, such as EEG, Auditory Habituation, and Auditory Chirp Synchronization, to better understand STP1's mechanism of action. Additionally, we used several clinical scales to measure treatment outcomes. The results showed that STP1 was well-tolerated, with electrophysiological markers indicating a significant and dose-related reduction of gamma power in the whole brain and in brain areas associated with executive function and memory. Treatment with STP1 also increased alpha 2 power in frontal and occipital regions and improved habituation and neural synchronization to auditory chirps. Although numerical improvements were observed in several clinical scales, they did not reach statistical significance. Overall, this study suggests that STP1 is well-tolerated in ASD-Phen1 patients and shows indirect target engagement in ASD brain regions of interest.
Collapse
Affiliation(s)
- Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Laura Perez-Cano
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Child Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric Painbeni
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Gregory Bonfils
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hannah Sachs
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Meredith Nelson
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa De Stefano
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Grace Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adriano L. S. de Souza
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Oliver Pohl
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | | | | | - Thomas Blaettler
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Jean-Marc Hyvelin
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Lynn A. Durham
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| |
Collapse
|
8
|
Westmark PR, Swietlik TJ, Runde E, Corsiga B, Nissan R, Boeck B, Granger R, Jennings E, Nebbia M, Thauwald A, Lyon G, Maganti RK, Westmark CJ. Adult Inception of Ketogenic Diet Therapy Increases Sleep during the Dark Cycle in C57BL/6J Wild Type and Fragile X Mice. Int J Mol Sci 2024; 25:6679. [PMID: 38928388 PMCID: PMC11203515 DOI: 10.3390/ijms25126679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep problems are a significant phenotype in children with fragile X syndrome. Our prior work assessed sleep-wake cycles in Fmr1KO male mice and wild type (WT) littermate controls in response to ketogenic diet therapy where mice were treated from weaning (postnatal day 18) through study completion (5-6 months of age). A potentially confounding issue with commencing treatment during an active period of growth is the significant reduction in weight gain in response to the ketogenic diet. The aim here was to employ sleep electroencephalography (EEG) to assess sleep-wake cycles in mice in response to the Fmr1 genotype and a ketogenic diet, with treatment starting at postnatal day 95. EEG results were compared with prior sleep outcomes to determine if the later intervention was efficacious, as well as with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. The data replicated findings that Fmr1KO mice exhibit sleep-wake patterns similar to wild type littermates during the dark cycle when maintained on a control purified-ingredient diet but revealed a genotype-specific difference during hours 4-6 of the light cycle of the increased wake (decreased sleep and NREM) state in Fmr1KO mice. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of NREM sleep in both wild type and Fmr1KO mice during the dark cycle. Differences in sleep microstructure (length of wake bouts) supported the altered sleep states in response to ketogenic diet. Commencing ketogenic diet treatment in adulthood resulted in a 15% (WT) and 8.6% (Fmr1KO) decrease in body weight after 28 days of treatment, but not the severe reduction in body weight associated with starting treatment at weaning. We conclude that the lack of evidence for improved sleep during the light cycle (mouse sleep time) in Fmr1KO mice in response to ketogenic diet therapy in two studies suggests that ketogenic diet may not be beneficial in treating sleep problems associated with fragile X and that actigraphy is not a reliable surrogate for sleep EEG in mice.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Timothy J. Swietlik
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Ethan Runde
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Brian Corsiga
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Rachel Nissan
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Brynne Boeck
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Ricky Granger
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Erica Jennings
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Maya Nebbia
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Andrew Thauwald
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Greg Lyon
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
9
|
Pedapati EV, Ethridge LE, Liu Y, Liu R, Sweeney JA, DeStefano LA, Miyakoshi M, Razak K, Schmitt LM, Moore DR, Gilbert DL, Wu SW, Smith E, Shaffer RC, Dominick KC, Horn PS, Binder D, Erickson CA. Frontal Cortex Hyperactivation and Gamma Desynchrony in Fragile X Syndrome: Correlates of Auditory Hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598957. [PMID: 38915683 PMCID: PMC11195233 DOI: 10.1101/2024.06.13.598957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in top-down modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lauren E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Yanchen Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rui Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, UK
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth Smith
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Devin Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
10
|
Takarae Y, Zanesco A, Erickson CA, Pedapati EV. EEG Microstates as Markers for Cognitive Impairments in Fragile X Syndrome. Brain Topogr 2024; 37:432-446. [PMID: 37751055 DOI: 10.1007/s10548-023-01009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).
Collapse
Affiliation(s)
- Yukari Takarae
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA.
- M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA.
| | - Anthony Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
11
|
Juarez P, Salcedo-Arellano MJ, Dufour B, Martinez-Cerdeño V. Fragile X cortex is characterized by decreased parvalbumin-expressing interneurons. Cereb Cortex 2024; 34:bhae103. [PMID: 38521994 PMCID: PMC10960956 DOI: 10.1093/cercor/bhae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024] Open
Abstract
Fragile X syndrome is a genetic neurodevelopmental disorder caused by a mutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene in the X chromosome. Many fragile X syndrome cases present with autism spectrum disorder and fragile X syndrome cases account for up to 5% of all autism spectrum disorder cases. The cellular composition of the fragile X syndrome cortex is not well known. We evaluated alterations in the number of Calbindin, Calretinin, and Parvalbumin expressing interneurons across 5 different cortical areas, medial prefrontal cortex (BA46), primary somatosensory cortex (BA3), primary motor cortex (BA4), superior temporal cortex (BA22), and anterior cingulate cortex (BA24) of fragile X syndrome and neurotypical brains. Compared with neurotypical cases, fragile X syndrome brains displayed a significant reduction in the number of PV+ interneurons in all areas and of CR+ interneurons in BA22 and BA3. The number of CB+ interneurons did not differ. These findings are the first to demonstrate that fragile X syndrome brains are characterized by cortical wide PV+ interneuron deficits across multiple cortical areas. These add to the idea that deficits in PV+ interneurons could disrupt the cortical balance and promote clinical deficits in fragile X syndrome patients and help to develop novel therapies for neurodevelopmental disorders like fragile X syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Pablo Juarez
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
| | - Maria Jimena Salcedo-Arellano
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| | - Brett Dufour
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| |
Collapse
|
12
|
Ethridge LE, Pedapati EV, Schmitt LM, Norris JE, Auger E, De Stefano LA, Sweeney JA, Erickson CA. Validating brain activity measures as reliable indicators of individual diagnostic group and genetically mediated sub-group membership Fragile X Syndrome. RESEARCH SQUARE 2024:rs.3.rs-3849272. [PMID: 38313274 PMCID: PMC10836101 DOI: 10.21203/rs.3.rs-3849272/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined whole-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses best discriminated non-mosaic FXS males via whole-head resting relative power (AUC = .9250), even with data reduced to a 20-channel clinical montage. FXS females were nearly perfectly discriminated by combined theta, alpha, and gamma power during the chirp (AUC = .9522). Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.
Collapse
|
13
|
Liu R, Pedapati EV, Schmitt LM, Shaffer RC, Smith EG, Dominick KC, DeStefano LA, Westerkamp G, Horn P, Sweeney JA, Erickson CA. Reliability of resting-state electrophysiology in fragile X syndrome. Biomark Neuropsychiatry 2023; 9:100070. [PMID: 38817342 PMCID: PMC11138258 DOI: 10.1016/j.bionps.2023.100070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Objective Fragile X Syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorder. Currently, there are no established biomarkers for predicting and monitoring drug effects in FXS, and no approved therapies are available. Previous studies have shown electrophysiological changes in the brain using electroencephalography (EEG) in individuals with FXS and animal models. These changes may be influenced by drug therapies. In this study, we aimed to assess the reliability of resting-state EEG measures in individuals with FXS, which could potentially serve as a biomarker for drug discovery. Methods We collected resting-state EEG data from 35 individuals with FXS participating in placebo-controlled clinical trials (23 males, 12 females; visit age mean+/-std 25.6 +/-8.3). The data were analyzed for various spectral features using intraclass correlation analysis to evaluate test-retest reliability. The intervals between EEG recordings ranged from same-day measurements to up to six weeks apart. Results Our results showed high reliability for most spectral features, with same-day reliability exceeding 0.8. Features of interest demonstrated ICC values of 0.60 or above at longer intervals. Among the features, alpha band relative power exhibited the highest reliability. Conclusion These findings indicate that resting-state EEG can provide consistent and reproducible measures of brain activity in individuals with FXS. This supports the potential use of EEG as an objective biomarker for evaluating the effects of new drugs in FXS. Significance The reliable measurements obtained from power spectrum-based resting-state EEG make it a promising tool for assessing the impact of small molecule drugs in FXS.
Collapse
Affiliation(s)
- Rui Liu
- Cincinnati Children’s Hospital Medical Center, United States
| | - Ernest V. Pedapati
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Lauren M. Schmitt
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Rebecca C. Shaffer
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Elizabeth G. Smith
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Kelli C. Dominick
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | | | | | - Paul Horn
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | | | - Craig A. Erickson
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| |
Collapse
|
14
|
Bhaskaran AA, Gauvrit T, Vyas Y, Bony G, Ginger M, Frick A. Endogenous noise of neocortical neurons correlates with atypical sensory response variability in the Fmr1 -/y mouse model of autism. Nat Commun 2023; 14:7905. [PMID: 38036566 PMCID: PMC10689491 DOI: 10.1038/s41467-023-43777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Excessive neural variability of sensory responses is a hallmark of atypical sensory processing in autistic individuals with cascading effects on other core autism symptoms but unknown neurobiological substrate. Here, by recording neocortical single neuron activity in a well-established mouse model of Fragile X syndrome and autism, we characterized atypical sensory processing and probed the role of endogenous noise sources in exaggerated response variability in males. The analysis of sensory stimulus evoked activity and spontaneous dynamics, as well as neuronal features, reveals a complex cellular and network phenotype. Neocortical sensory information processing is more variable and temporally imprecise. Increased trial-by-trial and inter-neuronal response variability is strongly related to key endogenous noise features, and may give rise to behavioural sensory responsiveness variability in autism. We provide a novel preclinical framework for understanding the sources of endogenous noise and its contribution to core autism symptoms, and for testing the functional consequences for mechanism-based manipulation of noise.
Collapse
Affiliation(s)
- Arjun A Bhaskaran
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Théo Gauvrit
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Yukti Vyas
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Guillaume Bony
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Melanie Ginger
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Andreas Frick
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France.
- University of Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
15
|
McGann AM, Westerkamp GC, Chalasani A, Danzer CSK, Parkins EV, Rajathi V, Horn PS, Pedapati EV, Tiwari D, Danzer SC, Gross C. MiR-324-5p inhibition after intrahippocampal kainic acid-induced status epilepticus does not prevent epileptogenesis in mice. Front Neurol 2023; 14:1280606. [PMID: 38033777 PMCID: PMC10687438 DOI: 10.3389/fneur.2023.1280606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Background Acquired epilepsies are caused by an initial brain insult that is followed by epileptogenesis and finally the development of spontaneous recurrent seizures. The mechanisms underlying epileptogenesis are not fully understood. MicroRNAs regulate mRNA translation and stability and are frequently implicated in epilepsy. For example, antagonism of a specific microRNA, miR-324-5p, before brain insult and in a model of chronic epilepsy decreases seizure susceptibility and frequency, respectively. Here, we tested whether antagonism of miR-324-5p during epileptogenesis inhibits the development of epilepsy. Methods We used the intrahippocampal kainic acid (IHpKa) model to initiate epileptogenesis in male wild type C57BL/6 J mice aged 6-8 weeks. Twenty-four hours after IHpKa, we administered a miR-324-5p or scrambled control antagomir intracerebroventricularly and implanted cortical surface electrodes for EEG monitoring. EEG data was collected for 28 days and analyzed for seizure frequency and duration, interictal spike activity, and EEG power. Brains were collected for histological analysis. Results Histological analysis of brain tissue showed that IHpKa caused characteristic hippocampal damage in most mice regardless of treatment. Antagomir treatment did not affect latency to, frequency, or duration of spontaneous recurrent seizures or interictal spike activity but did alter the temporal development of frequency band-specific EEG power. Conclusion These results suggest that miR-324-5p inhibition during epileptogenesis induced by status epilepticus does not convey anti-epileptogenic effects despite having subtle effects on EEG frequency bands. Our results highlight the importance of timing of intervention across epilepsy development and suggest that miR-324-5p may act primarily as a proconvulsant rather than a pro-epileptogenic regulator.
Collapse
Affiliation(s)
- Amanda M. McGann
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Grace C. Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alisha Chalasani
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Cole S. K. Danzer
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Emma V. Parkins
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Valerine Rajathi
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Paul S. Horn
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve C. Danzer
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Anesthesia, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christina Gross
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
16
|
Norris JE, Schmitt LM, De Stefano LA, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Neuropsychiatric feature-based subgrouping reveals neural sensory processing spectrum in female FMR1 premutation carriers: A pilot study. Front Integr Neurosci 2023; 17:898215. [PMID: 36816716 PMCID: PMC9936150 DOI: 10.3389/fnint.2023.898215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Fragile X Syndrome (FXS) is rare genetic condition characterized by a repeat expansion (CGG) in the Fragile X messenger ribonucleoprotein 1 (FMR1) gene where individuals with greater than 200 repeats are defined as full mutation. FXS clinical presentation often includes intellectual disability, and autism-like symptoms, including anxiety and sensory hypersensitivities. Individuals with 55 to <200 CGG repeats are said to have the FMR1 premutation, which is not associated with primary characteristics of the full mutation, but with an increased risk for anxiety, depression, and other affective conditions, as well as and impaired cognitive processing differences that vary in severity. Defining subgroups of premutation carriers based on distinct biological features may identify subgroups with varying levels of psychiatric, cognitive, and behavioral alterations. Methods The current pilot study utilized 3 cluster subgroupings defined by previous k means cluster analysis on neuropsychiatric, cognitive, and resting EEG variables in order to examine basic sensory auditory chirp task-based EEG parameters from 33 females with the FMR1 premutation (ages 17-78). Results Based on the predefined, neuropsychiatric three-cluster solution, premutation carriers with increased neuropsychiatric features and higher CGG repeat counts (cluster 1) showed decreased stimulus onset response, similar to previous ERP findings across a number of psychiatric disorders but opposite to findings in individuals with full mutation FXS. Premutation carriers with increased executive dysfunction and resting gamma power (cluster 2) exhibited decreased gamma phase locking to a chirp stimulus, similar to individuals with full mutation FXS. Cluster 3 members, who were relatively unaffected by psychiatric or cognitive symptoms, showed the most normative task-based EEG metrics. Discussion Our findings suggest a spectrum of sensory processing characteristics present in subgroups of premutation carriers that have been previously understudied due to lack of overall group differences. Our findings also further validate the pre-defined clinical subgroups by supporting links between disturbances in well-defined neural pathways and behavioral alterations that may be informative for identifying the mechanisms supporting specific risk factors and divergent therapeutic needs in individuals with the FMR1 premutation.
Collapse
Affiliation(s)
- Jordan E. Norris
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Lauren M. Schmitt
- Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa A. De Stefano
- Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Child Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Lauren E. Ethridge
- Department of Psychology, The University of Oklahoma, Norman, OK, United States,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,*Correspondence: Lauren E. Ethridge,
| |
Collapse
|
17
|
Schmitt LM, Li J, Liu R, Horn PS, Sweeney JA, Erickson CA, Pedapati EV. Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Mol Autism 2022; 13:47. [PMID: 36494861 PMCID: PMC9733336 DOI: 10.1186/s13229-022-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and autism spectrum disorder. Executive function (EF), necessary for adaptive goal-oriented behavior and dependent on frontal lobe function, is impaired in individuals with FXS. Yet, little is known how alterations in frontal lobe neural activity is related to EF deficits in FXS. METHODS Sixty-one participants with FXS (54% males) and 71 age- and sex-matched typically-developing controls (TDC; 58% males) completed a five-minute resting state electroencephalography (EEG) protocol and a computerized battery of tests of EF, the Test of Attentional Performance for Children (KiTAP). Following source localization (minimum-norm estimate), we computed debiased weighted phase lag index (dWPLI), a phase connectivity value, for pairings between 18 nodes in frontal regions for gamma (30-55 Hz) and alpha (10.5-12.5 Hz) bands. Linear models were generated with fixed factors of group, sex, frequency, and connection. Relationships between frontal connectivity and EF variables also were examined. RESULTS Individuals with FXS demonstrated increased gamma band and reduced alpha band connectivity across all frontal regions and across hemispheres compared to TDC. After controlling for nonverbal IQ, increased error rates on EF tasks were associated with increased gamma band and reduced alpha band connectivity. LIMITATIONS Frontal connectivity findings are limited to intrinsic brain activity during rest and may not generalize to frontal connectivity during EF tasks or everyday function. CONCLUSIONS We report gamma hyper-connectivity and alpha hypo-connectivity within source-localized frontal brain regions in FXS compared to TDC during resting-state EEG. For the first time in FXS, we report significant associations between EF and altered frontal connectivity, with increased error rate relating to increased gamma band connectivity and reduced alpha band connectivity. These findings suggest increased phase connectivity within gamma band may impair EF performance, whereas greater alpha band connectivity may provide compensatory support for EF. Together, these findings provide important insight into neurophysiological mechanisms of EF deficits in FXS and provide novel targets for treatment development.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Joy Li
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rui Liu
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA
| | - Paul S. Horn
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
18
|
Norris JE, DeStefano LA, Schmitt LM, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Hemispheric Utilization of Alpha Oscillatory Dynamics as a Unique Biomarker of Neural Compensation in Females with Fragile X Syndrome. ACS Chem Neurosci 2022; 13:3389-3402. [PMID: 36411085 DOI: 10.1021/acschemneuro.2c00404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide expansion on the FMR1 gene and characterized by intellectual disability, sensory hypersensitivity, executive function difficulties, and social anxiety. Recently, efforts to define neural biomarkers for FXS have highlighted disruptions to power in the alpha frequency band; however the dynamic mechanisms supporting these findings are poorly understood. The current study aimed to explore the temporal and hemispheric dynamics supporting alpha phenotypes in FXS and their relationship with neural phenotypes related to auditory processing using electroencephalography during an auditory evoked task. Adolescents and adults (N = 36) with FXS and age/sex matched typically developing controls (N = 40) completed an auditory chirp task. Frontal alpha power in the prestimulus period was decomposed into "bursts" using percentile thresholding, then assessed for number of bursts per second (burst count) and burst length. Data were compared across left and right hemispheres to assess lateralization of neural activity. Individuals with FXS showed more differences in alpha power compared to TDC primarily in the right hemisphere. Notably, alpha hemisphere outcomes in males with FXS were driven by the number of times they entered a dynamically relevant period of alpha (burst count) rather than length of time spent in alpha. Females with FXS showed reduced burst counts but remained in sustained high alpha states for longer periods of time. Length of time spent in alpha may reflect a modulatory or compensatory mechanism capable of recovering sensory processing abilities in females with FXS resulting in a less severe clinical presentation. Right hemisphere abnormalities may impact sensory processing differences between males and females with FXS. The relationship between alpha burst length, count, sex, and hemisphere may shed light on underlying mechanisms for previously observed alpha power abnormalities in FXS and their variation by sex.
Collapse
Affiliation(s)
- Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
19
|
Jonak CR, Pedapati EV, Schmitt LM, Assad SA, Sandhu MS, DeStefano L, Ethridge L, Razak KA, Sweeney JA, Binder DK, Erickson CA. Baclofen-associated neurophysiologic target engagement across species in fragile X syndrome. J Neurodev Disord 2022; 14:52. [PMID: 36167501 PMCID: PMC9513876 DOI: 10.1186/s11689-022-09455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/03/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common inherited form of neurodevelopmental disability. It is often characterized, especially in males, by intellectual disability, anxiety, repetitive behavior, social communication deficits, delayed language development, and abnormal sensory processing. Recently, we identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. METHODS In this report, we evaluate small molecule target engagement utilizing multielectrode array electrophysiology in the Fmr1 KO mouse and in humans with FXS. Neurophysiologic target engagement was evaluated using single doses of the GABAB selective agonist racemic baclofen (RBAC). RESULTS In Fmr1 KO mice and in humans with FXS, baclofen use was associated with suppression of elevated gamma power and increase in low-frequency power at rest. In the Fmr1 KO mice, a baclofen-associated improvement in auditory chirp synchronization was also noted. CONCLUSIONS Overall, we noted synchronized target engagement of RBAC on resting state electrophysiology, in particular the reduction of aberrant high frequency gamma activity, across species in FXS. This finding holds promise for translational medicine approaches to drug development for FXS, synchronizing treatment study across species using well-established EEG biological markers in this field. TRIAL REGISTRATION The human experiments are registered under NCT02998151.
Collapse
Affiliation(s)
- Carrie R. Jonak
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Samantha A. Assad
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Manbir S. Sandhu
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Lisa DeStefano
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.266900.b0000 0004 0447 0018Department of Psychology, University of Oklahoma, Norman, OK USA
| | - Lauren Ethridge
- grid.266900.b0000 0004 0447 0018Department of Psychology, University of Oklahoma, Norman, OK USA ,grid.266902.90000 0001 2179 3618Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Khaleel A. Razak
- grid.266097.c0000 0001 2222 1582Neuroscience Graduate Program, University of California, Riverside, USA ,grid.266097.c0000 0001 2222 1582Psychology Graduate Program, University of California, Riverside, USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Devin K. Binder
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA ,grid.266097.c0000 0001 2222 1582Neuroscience Graduate Program, University of California, Riverside, USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|