1
|
Hochrainer K, Hansen A, Garcia-Bonilla L. Keep your guard up: blood-brain barrier protection by empagliflozin after acute ischaemic stroke. Cardiovasc Res 2025:cvaf049. [PMID: 40177812 DOI: 10.1093/cvr/cvaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Ashley Hansen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| |
Collapse
|
2
|
Wagner CA, Massy ZA, Capasso G, Mattace-Raso F, Pepin M, Bobot M, Zoccali C, Ferreira AC, Hoorn EJ, Imenez Silva PH, Unwin RJ, Pesic V. Translational research on cognitive impairment in chronic kidney disease. Nephrol Dial Transplant 2025; 40:621-631. [PMID: 39400744 DOI: 10.1093/ndt/gfae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Indexed: 10/15/2024] Open
Abstract
Cognitive decline is common in patients with acute or chronic kidney disease. Several areas of brain function can be affected, including short- and long-term memory, attention and inhibitory control, sleep, mood, eating control and motor function. Cognitive decline in kidney disease shares risk factors with cognitive dysfunction in people without kidney disease, such as diabetes, high blood pressure, sedentary lifestyle and unhealthy diet. However, additional kidney-specific risk factors may contribute, such as uremic toxins, electrolyte imbalances, chronic inflammation, acid-base disorders or endocrine dysregulation. Traditional and kidney-specific risk factors may interact to cause damage to the blood-brain barrier, induce vascular damage in the brain and cause neurotoxicity or neuroinflammation. Here, we discuss recent insights into the pathomechanisms of cognitive decline from animal models and novel avenues for prevention and therapy. We focus on a several areas that influence cognition: blood-brain barrier disruption, the role of skeletal muscle, physical activity and the endocrine factor irisin, and the emerging therapeutic role of sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists. Taken together, these studies demonstrate the importance of animal models in providing a mechanistic understanding of this complex condition and their potential to explain the mechanisms of novel therapies.
Collapse
Affiliation(s)
- Carsten A Wagner
- Department of Physiology and Zurich Kidney Center (ZKC), University of Zurich, Zurich, Switzerland
| | - Ziad A Massy
- Clinical Epidemiology, Inserm Unit 1018, CESP, Hôpital Paul Brousse, Paris-Sud University (UPS) Villejuif, France
- Association pour l'Utilisation du Rein Artificiel dans la région parisienne (AURA), Paris, France and Ambroise Paré University Hospital, APHP, Department of Nephrology Boulogne-Billancourt/Paris, France
| | - Giovambattista Capasso
- Biogem, Research Institute for Biology and Molecular Genetics, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Francesco Mattace-Raso
- Department of Internal Medicine, Division of Geriatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marion Pepin
- Clinical Epidemiology, Inserm Unit 1018, CESP, Hôpital Paul Brousse, Paris-Sud University (UPS) Villejuif, France
- Geriatric Department, Ambroise Paré University Hospital, APHP, Versailles Saint-Quentin-en-Yvelines University (UVSQ), Boulogne-Billancourt, France
| | - Mickaël Bobot
- Aix-Marseille Univ, C2VN, INSERM 1263, INRAE 1260, CERIMED, Marseille, France
| | - Carmine Zoccali
- Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale, Grande Ospedale Metropolitano, c/o Nefrologia, Reggio Calabria, Italy
| | - Ana C Ferreira
- Unidade Local de Saúde de São José - Hospital Curry Cabral, Nephrology Department, Lisbon, Portugal
- Nova Medical School - Nephrology, Lisbon, Portugal
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Hypertension, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pedro H Imenez Silva
- Department of Internal Medicine, Division of Nephrology and Hypertension, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert J Unwin
- Department of Renal Medicine, Royal Free Hospital Trust, University College London (UCL), London, UK
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Dai W, Alavi R, Li J, Carreno J, Pahlevan NM, Kloner RA. Empagliflozin demonstrates neuroprotective and cardioprotective effects by reducing ischemia/reperfusion damage in rat models of ischemic stroke and myocardial infarction. Sci Rep 2025; 15:8986. [PMID: 40089564 PMCID: PMC11910632 DOI: 10.1038/s41598-025-93483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors have demonstrated potential neuroprotective and cardioprotective effects in preliminary studies. This study evaluates the efficacy of empagliflozin (EMPA) in reducing ischemia/reperfusion damage in both the brain and heart using rat models. Ischemic stroke and myocardial infarction (MI) were induced in male Sprague-Dawley rats, which were randomized into three groups: (1) Control (no EMPA), (2) Acute treatment (EMPA, 10 mg/kg IV, administered 10 min before ischemia and 1 min before reperfusion), and (3) Chronic treatment (EMPA, 20 mg/kg in food for 7 days before ischemia). Stroke was induced by middle cerebral artery occlusion (MCAO) for one hour, followed by 3 h of reperfusion, and MI was induced by left coronary artery occlusion for 30 min, followed by 3 h of reperfusion. Brain and heart tissues were analyzed for anatomic size of myocardial infarction and stroke. In the brain, cerebral infarction was significantly smaller in both EMPA treatment groups compared to controls (acute: 3.7 ± 1.2%, chronic: 6.9 ± 2.1% vs. control: 14.5 ± 2.5%, p < 0.05). Edema was also reduced in the EMPA groups (acute: 5.5 ± 0.9%, chronic: 5.9 ± 0.8% vs. control: 9.6 ± 1.2%, p < 0.05). In the heart, MI size was significantly reduced in both EMPA groups (acute: 46.9 ± 2.0%, chronic: 48.8 ± 5.8% vs. control: 70.0 ± 2.6%, p < 0.05), and no-reflow size was smaller in the EMPA groups (acute: 36.3 ± 3.3%, chronic: 33.9 ± 4.3% vs. control: 53.4 ± 3.3%, p < 0.05). EMPA treatment, both acute and chronic, significantly reduces cerebral infarct volume and edema, as well as myocardial infarct size and no-reflow in rat models of ischemic stroke and myocardial ischemia/reperfusion, indicating substantial neuroprotective and cardioprotective effects.
Collapse
Affiliation(s)
- Wangde Dai
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA.
- Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA.
| | - Rashid Alavi
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Department of Medical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Jiajun Li
- Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave. Room 400, Los Angeles, CA, 90089, USA
| | - Juan Carreno
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
| | - Niema M Pahlevan
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave. Room 400, Los Angeles, CA, 90089, USA
| | - Robert A Kloner
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| |
Collapse
|
4
|
Zhang S, Huang Y, Han C, Wang F, Chen M, Yang Z, Yang S, Wang C. Central SGLT2 mediate sympathoexcitation in hypertensive heart failure via attenuating subfornical organ endothelial cGAS ubiquitination to amplify neuroinflammation: Molecular mechanism behind sympatholytic effect of Empagliflozin. Int Immunopharmacol 2025; 145:113711. [PMID: 39647283 DOI: 10.1016/j.intimp.2024.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sodium/glucose co-transporter 2 (SGLT2) inhibitors have transformed heart failure (HF) treatment, offering sympatholytic effects whose mechanisms are not fully understood. Our previous studies identified Cyclic GMP-AMP synthase (cGAS)-derived neuroinflammation in the Subfornical organ (SFO) as a promoter of sympathoexcitation, worsening myocardial remodeling in HF. This research explored the role of central SGLT2 in inducing endothelial cGAS-driven neuroinflammation in the SFO during HF and assessed the impact of SGLT2 inhibitors on this process. METHODS Hypertensive HF was induced in mice via Angiotensin II infusion for four weeks. SGLT2 expression and localization in the SFO were determined through immunoblotting and double-immunofluorescence staining. AAV9-TIE-shRNA (SGLT2) facilitated targeted SGLT2 knockdown in SFO endothelial cells (ECs), with subsequent analyses via immunoblotting, staining, and co-immunoprecipitation to investigate interactions with cGAS, mitochondrial alterations, and pro-inflammatory pathway activation. Renal sympathetic nerve activity and heart rate variability were measured to assess sympathetic output, alongside evaluations of cardiac function in HF mice. RESULTS In HF model mice, SGLT2 levels are markedly raised in SFO ECs, disrupting mitochondrial function and elevating oxidative stress. SGLT2 knockdown preserved mitochondrial integrity and function, reduced inflammation, and highlighted the influence of SGLT2 on mitochondrial health. SGLT2's interaction with cGAS prevented its ubiquitination and degradation, amplifying neuroinflammation and HF progression. Conversely, Empagliflozin counteracted these effects, suggesting that targeting the SGLT2-cGAS interaction as a novel HF treatment avenue. CONCLUSION This study revealed that SGLT2 directly reduced cGAS degradation in brain ECs, enhancing neuroinflammation in the SFO, and promoting sympathoexcitation and myocardial remodeling. The significance of the central SGLT2-cGAS interaction in cardiovascular disease mechanisms is emphasized.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
5
|
Chen Z, Meng H, Guo Y, Sun H, Zhang W, Guo Y, Hou S. Sodium-glucose cotransporter protein 2 inhibition, plasma proteins, and ischemic stroke: A mediation Mendelian randomization and colocalization study. J Stroke Cerebrovasc Dis 2025; 34:108136. [PMID: 39542148 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
PURPOSE To determine the effect of the sodium-glucose cotransporter protein 2 (SGLT2) inhibition on ischemic stroke (IS) and investigate the circulating proteins that mediate the effects of SGLT2 inhibition on IS. METHODS The effects of SGLT2 inhibition on IS were evaluated using two-sample Mendelian randomization (MR) analyses. The 4,907 circulating proteins from the plasma proteome were assessed to identify potential mediators. Sensitivity, colocalization, and external validation analyses were conducted to validate critical findings. MR analyses were also used to evaluate the associations of SGLT2 inhibition with magnetic resonance imaging (MRI)-based biomarkers and functional prognoses post-IS. RESULTS SGLT2 inhibition was significantly associated with decreased risks of IS (odds ratio (OR): 0.39, 95 % confidence interval (CI): 0.25-0.61, p = 3.53 × 10-5) and cardioembolic stroke (OR: 0.16, 95 % CI: 0.07-0.37, p = 1.82 × 10-5); the effect of SGLT2 inhibition on IS was indirectly mediated through pathways involving tryptophanyl-transfer RNA synthetase (WARS) (β:0.08, 95 % CI:0.15 - -0.01, p = 0.034) and matrix metalloproteinase 12 (MMP12) (β:0.06, 95 % CI:0.12 - -0.01, p = 0.016), with mediation proportions of 8.2 % and 6.8 %, respectively. The external validation confirmed the WARS mediating effect. In addition, the sensitivity and colocalization analyses and MR analyses of MRI biomarker-based and functional prognostic outcomes supported these results. CONCLUSION In this study, we demonstrated from a genetic perspective that SGLT2 inhibitors prevent the development of IS and improve functional prognostic outcomes and brain microstructural integrity. WARS and MMP12 may act as potential mediators, presenting a novel approach for IS intervention.
Collapse
Affiliation(s)
- Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yujin Guo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Guo
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Lusk JB, Mac Grory BC, Sheth KN, Bhatt DL. Interdisciplinary Engagement In Neurocardiology: A Key Opportunity. J Am Heart Assoc 2024; 13:e034804. [PMID: 39190594 PMCID: PMC11646539 DOI: 10.1161/jaha.124.034804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Jay B. Lusk
- Department of NeurologyDuke University School of MedicineDurhamNC
| | | | - Kevin N. Sheth
- Yale University Department of Neurology and Neurosurgery, Yale Center for Brain & Mind HealthNew HavenCT
| | - Deepak L. Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount SinaiNew YorkNY
| |
Collapse
|
7
|
Hirashima Y, Nakano T, Torisu K, Aihara S, Wakisaka M, Kitazono T. SGLT2 inhibition mitigates transition from acute kidney injury to chronic kidney disease by suppressing ferroptosis. Sci Rep 2024; 14:20386. [PMID: 39223189 PMCID: PMC11369184 DOI: 10.1038/s41598-024-71416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to be renoprotective in ischemia-reperfusion (I/R) injury, with several proposed mechanisms, though additional mechanisms likely exist. This study investigated the impact of luseogliflozin on kidney fibrosis at 48 h and 1 week post I/R injury in C57BL/6 mice. Luseogliflozin attenuated kidney dysfunction and the acute tubular necrosis score on day 2 post I/R injury, and subsequent fibrosis at 1 week, as determined by Sirius red staining. Metabolomics enrichment analysis of I/R-injured kidneys revealed suppression of the glycolytic system and activation of mitochondrial function under treatment with luseogliflozin. Western blotting showed increased nutrient deprivation signaling with elevated phosphorylated AMP-activated protein kinase and Sirtuin-3 in luseogliflozin-treated kidneys. Luseogliflozin-treated kidneys displayed increased protein levels of carnitine palmitoyl transferase 1α and decreased triglyceride deposition, as determined by oil red O staining, suggesting activated fatty acid oxidation. Luseogliflozin prevented the I/R injury-induced reduction in nuclear factor erythroid 2-related factor 2 activity. Western blotting revealed increased glutathione peroxidase 4 and decreased transferrin receptor protein 1 expression. Immunostaining showed reduced 4-hydroxynonenal and malondialdehyde levels, especially in renal tubules, indicating suppressed ferroptosis. Luseogliflozin may protect the kidney from I/R injury by inhibiting ferroptosis through oxidative stress reduction.
Collapse
Affiliation(s)
- Yutaro Hirashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seishi Aihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
8
|
Zhang Y, Mu BR, Ran Z, Zhu T, Huang X, Yang X, Wang DM, Ma QH, Lu MH. Pericytes in Alzheimer's disease: Key players and therapeutic targets. Exp Neurol 2024; 379:114825. [PMID: 38777251 DOI: 10.1016/j.expneurol.2024.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.
Collapse
Affiliation(s)
- Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China
| | - Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Mei J, Li Y, Niu L, Liang R, Tang M, Cai Q, Xu J, Zhang D, Yin X, Liu X, Shen Y, Liu J, Xu M, Xia P, Ling J, Wu Y, Liang J, Zhang J, Yu P. SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system. Transl Neurodegener 2024; 13:41. [PMID: 39123214 PMCID: PMC11312905 DOI: 10.1186/s40035-024-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
The rising prevalence of diabetes mellitus has casted a spotlight on one of its significant sequelae: cognitive impairment. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for diabetes management, are increasingly studied for their cognitive benefits. These benefits may include reduction of oxidative stress and neuroinflammation, decrease of amyloid burdens, enhancement of neuronal plasticity, and improved cerebral glucose utilization. The multifaceted effects and the relatively favorable side-effect profile of SGLT2 inhibitors render them a promising therapeutic candidate for cognitive disorders. Nonetheless, the application of SGLT2 inhibitors for cognitive impairment is not without its limitations, necessitating more comprehensive research to fully determine their therapeutic potential for cognitive treatment. In this review, we discuss the role of SGLT2 in neural function, elucidate the diabetes-cognition nexus, and synthesize current knowledge on the cognitive effects of SGLT2 inhibitors based on animal studies and clinical evidence. Research gaps are proposed to spur further investigation.
Collapse
Affiliation(s)
- Jiaqi Mei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Yi Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Liyan Niu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Ruikai Liang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyue Tang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiao Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Darsalia V, Vercalsteren E, Karampatsi D, Romanitan MO, Mazya MV, Nyström T, Patrone C. The need for registry-based studies in diabetes and stroke: A unique opportunity to understand whether diabetic treatments improve post-stroke outcome. Diabetes Obes Metab 2024; 26:2527-2530. [PMID: 38558509 DOI: 10.1111/dom.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ellen Vercalsteren
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mihaela Oana Romanitan
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael V Mazya
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Cen K, Huang Y, Xie Y, Liu Y. The guardian of intracranial vessels: Why the pericyte? Biomed Pharmacother 2024; 176:116870. [PMID: 38850658 DOI: 10.1016/j.biopha.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.
Collapse
Affiliation(s)
- Kuan Cen
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YinFei Huang
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - Yu Xie
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YuMin Liu
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China.
| |
Collapse
|
12
|
Yamato M, Kato N, Yamada KI, Inoguchi T. The Early Pathogenesis of Diabetic Retinopathy and Its Attenuation by Sodium-Glucose Transporter 2 Inhibitors. Diabetes 2024; 73:1153-1166. [PMID: 38608284 PMCID: PMC11208076 DOI: 10.2337/db22-0970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The early pathogenetic mechanism of diabetic retinopathy (DR) and its treatment remain unclear. Therefore, we used streptozotocin-induced diabetic mice to investigate the early pathogenic alterations in DR and the protective effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors against these alterations. Retinal vascular leakage was assessed by dextran fluorescence angiography. Retinal thickness and vascular leakage were increased 2 and 4 weeks after onset of diabetes, respectively. Immunostaining showed that morphological change of microglia (amoeboid form) was observed at 2 weeks. Subsequently, increased angiopoietin-2 expression, simultaneous loss of pericytes and endothelial cells, decreased vessel density, retinal hypoxia, and increased vascular endothelial growth factor (VEGF)-A/VEGF receptor system occurred at 4 weeks. SGLT2 inhibitors (luseogliflozin and ipragliflozin) had a significant protective effect on retinal vascular leakage and retinal thickness at a low dose that did not show glucose-lowering effects. Furthermore, both inhibitors at this dose attenuated microglia morphological changes and these early pathogenic alterations in DR. In vitro study showed both inhibitors attenuated the lipopolysaccharide-induced activation of primary microglia, along with morphological changes toward an inactive form, suggesting the direct inhibitory effect of SGLT2 inhibitors on microglia. In summary, SGLT2 inhibitors may directly prevent early pathogenic mechanisms, thereby potentially playing a role in preventing DR. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mayumi Yamato
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Nao Kato
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoshi Inoguchi
- Fukuoka City Health Promotion Support Center, Fukuoka City Medical Association, Fukuoka, Japan
| |
Collapse
|
13
|
Song J, Liu Y, Xu Y, Hao P. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Acute Coronary Syndrome. ACS Pharmacol Transl Sci 2024; 7:1847-1855. [PMID: 38898953 PMCID: PMC11184598 DOI: 10.1021/acsptsci.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 06/21/2024]
Abstract
The evidence for sodium-glucose cotransporter 2 inhibitors (SGLT2i) in the treatment of type 2 diabetes or chronic heart failure was sufficient but lacking in acute coronary syndrome (ACS). Our aim was to investigate the effects of SGLT2i on cardiovascular outcomes in ACS patients. Studies of SGLT2i selection in ACS patients were searched and pooled. Outcomes included all-cause death, adverse cardiovascular events, cardiac remodeling as measured by the left ventricular end-diastolic dimension (LVEDD) and left ventricular end-systolic dimension (LVESD), cardiac function as assessed by the left ventricular ejection fraction (LVEF) and NT-proBNP, and glycemic control. Twenty-four studies with 12,413 patients were identified. Compared to the group without SGLT2i, SGLT2i showed benefits in reducing all-cause death (OR 0.72, 95% CI [0.61, 0.85]), major adverse cardiovascular events (MACE) (OR 0.44, 95% CI [0.30, 0.64]), cardiovascular death (OR 0.66, 95% CI [0.54, 0.81]), heart failure (OR 0.52, 95% CI [0.44, 0.62]), myocardial infarction (OR 0.68, 95% CI [0.56, 0.83]), angina pectoris (OR 0.37, 95% CI [0.17, 0.78]), and stroke (OR 0.48, 95% CI [0.24, 0.96]). Results favored SGLT2i for LVEDD (MD -2.03, 95% CI [-3.29, -0.77]), LVEF (MD 3.22, 95% CI [1.71, 4.72]), and NT-proBNP (MD -171.53, 95% CI [-260.98, -82.08]). Thus, SGLT2i treatment reduces the risk of all-cause death and MACE and improves cardiac remodeling and function in ACS patients.
Collapse
Affiliation(s)
- Jiawei Song
- State
Key Laboratory for Innovation and Transformation of Luobing Theory,
The Key Laboratory of Cardiovascular Remodeling and Function Research,
Chinese Ministry of Education, Chinese National Health Commission
and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department
of Cardiology, Wuzhong People’s Hospital
Affiliated to Ningxia Medical University, Wuzhong, Ningxia 751100, China
- School
of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanping Liu
- Department
of Radiology, Qilu Hospital of Shandong
University, Jinan, Shandong 250012, China
| | - Yani Xu
- State
Key Laboratory for Innovation and Transformation of Luobing Theory,
The Key Laboratory of Cardiovascular Remodeling and Function Research,
Chinese Ministry of Education, Chinese National Health Commission
and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Panpan Hao
- State
Key Laboratory for Innovation and Transformation of Luobing Theory,
The Key Laboratory of Cardiovascular Remodeling and Function Research,
Chinese Ministry of Education, Chinese National Health Commission
and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department
of Cardiology, Wuzhong People’s Hospital
Affiliated to Ningxia Medical University, Wuzhong, Ningxia 751100, China
| |
Collapse
|
14
|
Su Y, Zhang Y, Xu J. Genetic variations in anti-diabetic drug targets and COPD risk: evidence from mendelian randomization. BMC Pulm Med 2024; 24:240. [PMID: 38750544 PMCID: PMC11094874 DOI: 10.1186/s12890-024-02959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/09/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Previous research has emphasized the potential benefits of anti-diabetic medications in inhibiting the exacerbation of Chronic Obstructive Pulmonary Disease (COPD), yet the role of anti-diabetic drugs on COPD risk remains uncertain. METHODS This study employed a Mendelian randomization (MR) approach to evaluate the causal association of genetic variations related to six classes of anti-diabetic drug targets with COPD. The primary outcome for COPD was obtained from the Global Biobank Meta-analysis Initiative (GBMI) consortium, encompassing a meta-analysis of 12 cohorts with 81,568 cases and 1,310,798 controls. Summary-level data for HbA1c was derived from the UK Biobank, involving 344,182 individuals. Positive control analysis was conducted for Type 2 Diabetes Mellitus (T2DM) to validate the choice of instrumental variables. The study applied Summary-data-based MR (SMR) and two-sample MR for effect estimation and further adopted colocalization analysis to verify evidence of genetic variations. RESULTS SMR analysis revealed that elevated KCNJ11 gene expression levels in blood correlated with reduced COPD risk (OR = 0.87, 95% CI = 0.79-0.95; p = 0.002), whereas an increase in DPP4 expression corresponded with an increased COPD incidence (OR = 1.18, 95% CI = 1.03-1.35; p = 0.022). Additionally, the primary method within MR analysis demonstrated a positive correlation between PPARG-mediated HbA1c and both FEV1 (OR = 1.07, 95% CI = 1.02-1.13; P = 0.013) and FEV1/FVC (OR = 1.08, 95% CI = 1.01-1.14; P = 0.007), and a negative association between SLC5A2-mediated HbA1c and FEV1/FVC (OR = 0.86, 95% CI = 0.74-1.00; P = 0.045). No colocalization evidence with outcome phenotypes was detected (all PP.H4 < 0.7). CONCLUSION This study provides suggestive evidence for anti-diabetic medications' role in improving COPD and lung function. Further updated MR analyses are warranted in the future, following the acquisition of more extensive and comprehensive data, to validate our results.
Collapse
Affiliation(s)
- Yue Su
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Youqian Zhang
- Yangtze University, Jingzhou, Hubei Province, 434000, China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
15
|
Yang W, Kim JM, Chung M, Ha J, Kang DW, Lee EJ, Jeong HY, Jung KH, Sung H, Paeng JC, Lee SH. Sodium-Glucose Cotransporter 2 Inhibitor Improves Neurological Outcomes in Diabetic Patients With Acute Ischemic Stroke. J Stroke 2024; 26:342-346. [PMID: 38836284 PMCID: PMC11164579 DOI: 10.5853/jos.2023.04056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Wookjin Yang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Matthew Chung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jiyeon Ha
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Wan Kang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eung-Joon Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Yeong Jeong
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunpil Sung
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Hoon Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Shirani A, Cross AH, Stuve O. Exploring the association between weight loss-inducing medications and multiple sclerosis: insights from the FDA adverse event reporting system database. Ther Adv Neurol Disord 2024; 17:17562864241241383. [PMID: 38566910 PMCID: PMC10986166 DOI: 10.1177/17562864241241383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background Several studies have demonstrated that early childhood and adolescent obesity are risk factors for multiple sclerosis (MS) susceptibility. Obesity is thought to share inflammatory components with MS through overproduction of pro-inflammatory adipokines (e.g., leptin) and reduction of anti-inflammatory adipokines (e.g, adiponectin). Recently, drug repurposing (i.e. identifying new indications for existing drugs) has garnered significant attention. The US Food and Drug Administration Adverse Event Reporting System (FAERS) database serves not only as a resource for mining adverse drug reactions and safety signals but also for identifying inverse associations and potential medication repurposing opportunities. Objective We aimed to explore the association between weight-loss-inducing drugs and MS using real-world reports from the FAERS database. Design Secondary analysis of existing data from the FAERS database. Methods We conducted a disproportionality analysis using the FAERS database between the fourth quarter of 2003 and the second quarter of 2023 to explore associations between MS and weight loss-inducing drugs. Disproportionality was quantified using the reporting odds ratio (ROR). An inverse association was defined when the upper limit of the 95% confidence interval for ROR was <1. Results We found an inverse association between MS and anti-diabetic weight loss-inducing drugs including semaglutide (ROR: 0.238; 95% CI: 0.132-0.429), dulaglutide (ROR: 0.165; 95% CI: 0.109-0.248), liraglutide (ROR: 0.161; 95% CI: 0.091-0.284), empagliflozin (ROR: 0.234; 95% CI: 0.146-0.377), and metformin (ROR: 0.387; 95% CI: 0.340-0.440). No inverse associations were found for other weight loss-inducing drugs such as phentermine, bupropion, topiramate, zonisamide, and amphetamine. An exception was naltrexone (ROR: 0.556; 95% CI: 0.384-0.806). Conclusion Our findings suggest a potential consideration for repurposing anti-diabetic weight loss-inducing drugs including semaglutide, dulaglutide, and liraglutide (glucagon-like peptide-1 receptor agonists), empagliflozin (sodium-glucose cotransporter-2 inhibitor), and metformin (biguanide), for MS. This warrants validation through rigorous methodologies and prospective studies.
Collapse
Affiliation(s)
- Afsaneh Shirani
- Department of Neurological Sciences, University of Nebraska Medical Center, 988440 Nebraska Medical Center, Omaha, NE 68198-8440, USA
| | - Anne H. Cross
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center and Dallas VA Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Dong Y, Long B, Tian Z, Huang J, Wei Y. Increased serum SGLT2 and its potential diagnostic and prognostic value in patients with acute ischemic stroke. Clin Biochem 2024; 125:110733. [PMID: 38373585 DOI: 10.1016/j.clinbiochem.2024.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Recently acquired data suggests that sodium-glucose cotransporter-2 (SGLT2) may be a therapeutic target for cerebral ischemia. The specific impact of SGLT2 in acute ischemic stroke (AIS) remains unknown. We aimed to explore the levels of SGLT2 in AIS patients and its association with functional prognosis. METHODS In this study, 132 AIS patients and 44 healthy controls were recruited prospectively to determine serum SGLT2 levels. Logistic regression analysis was employed to assess the association between serum SGLT2 level and stroke risk as well as 3-month outcome. Receiver operating characteristic (ROC) curves were utilized to evaluate predictive values for blood biomarkers. RESULTS Serum SGLT2 levels were significantly higher (P =.000) in AIS patients (47.1 (interquartile range [IQR]: 42.4-50.9) ng/mL) than healthy controls (35.7 (IQR: 28.6-39.5) ng/mL). The optimal SGLT2 cutoff point for diagnosing AIS was 39.55 ng/mL, with a sensitivity of 90.2 % and specificity of 77.3 %. Serum levels of SGLT2 were negatively correlated with the onset time of AIS (linear fit R2 = 0.056, P =.006), but were not associated with National Institutes of Health Stroke Scale (NIHSS) scores (r = 0.007, P >.05) and lesion volume (r = -0.151, P >.05). SGLT2 was not remarkably different between patients with unfavorable and favorable outcomes (46.7 (IQR: 41.9-49.6) ng/mL vs 47.6 (IQR: 42.5-51.9) ng/mL; P =.321). CONCLUSIONS The serum SGLT2 concentration may be a potential biomarker for the diagnosis of AIS. However, it does not exhibit any association with disease severity or functional prognosis.
Collapse
Affiliation(s)
- Yuhan Dong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Bo Long
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Zhanglin Tian
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Junmeng Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Youdong Wei
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| |
Collapse
|
18
|
Vercalsteren E, Karampatsi D, Buizza C, Nyström T, Klein T, Paul G, Patrone C, Darsalia V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc Diabetol 2024; 23:88. [PMID: 38424560 PMCID: PMC10905950 DOI: 10.1186/s12933-024-02174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Type-2 diabetes (T2D) worsens stroke recovery, amplifying post-stroke disabilities. Currently, there are no therapies targeting this important clinical problem. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are potent anti-diabetic drugs that also efficiently reduce cardiovascular death and heart failure. In addition, SGLT2i facilitate several processes implicated in stroke recovery. However, the potential efficacy of SGLT2i to improve stroke recovery in T2D has not been investigated. Therefore, we determined whether a post-stroke intervention with the SGLT2i Empagliflozin could improve stroke recovery in T2D mice. T2D was induced in C57BL6J mice by 8 months of high-fat diet feeding. Hereafter, animals were subjected to transient middle cerebral artery occlusion and treated with vehicle or the SGLTi Empagliflozin (10 mg/kg/day) starting from 3 days after stroke. A similar study in non diabetic mice was also conducted. Stroke recovery was assessed using the forepaw grip strength test. To identify potential mechanisms involved in the Empagliflozin-mediated effects, several metabolic parameters were assessed. Additionally, neuronal survival, neuroinflammation, neurogenesis and cerebral vascularization were analyzed using immunohistochemistry/quantitative microscopy. Empagliflozin significantly improved stroke recovery in T2D but not in non-diabetic mice. Improvement of functional recovery was associated with lowered glycemia, increased serum levels of fibroblast growth factor-21 (FGF-21), and the normalization of T2D-induced aberration of parenchymal pericyte density. The global T2D-epidemic and the fact that T2D is a major risk factor for stroke are drastically increasing the number of people in need of efficacious therapies to improve stroke recovery. Our data provide a strong incentive for the potential use of SGLT2i for the treatment of post-stroke sequelae in T2D.
Collapse
Affiliation(s)
- Ellen Vercalsteren
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| |
Collapse
|
19
|
Shim B, Stokum JA, Moyer M, Tsymbalyuk N, Tsymbalyuk O, Keledjian K, Ivanova S, Tosun C, Gerzanich V, Simard JM. Canagliflozin, an Inhibitor of the Na +-Coupled D-Glucose Cotransporter, SGLT2, Inhibits Astrocyte Swelling and Brain Swelling in Cerebral Ischemia. Cells 2023; 12:2221. [PMID: 37759444 PMCID: PMC10527352 DOI: 10.3390/cells12182221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Brain swelling is a major cause of death and disability in ischemic stroke. Drugs of the gliflozin class, which target the Na+-coupled D-glucose cotransporter, SGLT2, are approved for type 2 diabetes mellitus (T2DM) and may be beneficial in other conditions, but data in cerebral ischemia are limited. We studied murine models of cerebral ischemia with middle cerebral artery occlusion/reperfusion (MCAo/R). Slc5a2/SGLT2 mRNA and protein were upregulated de novo in astrocytes. Live cell imaging of brain slices from mice following MCAo/R showed that astrocytes responded to modest increases in D-glucose by increasing intracellular Na+ and cell volume (cytotoxic edema), both of which were inhibited by the SGLT2 inhibitor, canagliflozin. The effect of canagliflozin was studied in three mouse models of stroke: non-diabetic and T2DM mice with a moderate ischemic insult (MCAo/R, 1/24 h) and non-diabetic mice with a severe ischemic insult (MCAo/R, 2/24 h). Canagliflozin reduced infarct volumes in models with moderate but not severe ischemic insults. However, canagliflozin significantly reduced hemispheric swelling and improved neurological function in all models tested. The ability of canagliflozin to reduce brain swelling regardless of an effect on infarct size has important translational implications, especially in large ischemic strokes.
Collapse
Affiliation(s)
- Bosung Shim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Natalya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (J.A.S.); (M.M.); (N.T.); (O.T.); (K.K.); (S.I.); (C.T.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Nakamura K, Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J Atheroscler Thromb 2023; 30:1085-1094. [PMID: 37394570 PMCID: PMC10499454 DOI: 10.5551/jat.rv22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
There are still many patients suffering from ischemic stroke and related disabilities worldwide. To develop a treatment that promotes functional recovery after acute ischemic stroke, we need to elucidate endogenous tissue repair mechanisms. The concept of a neurovascular unit (NVU) indicates the importance of a complex orchestration of cell-cell interactions and their microenvironment in the physiology and pathophysiology of various central nervous system diseases, particularly ischemic stroke. In this concept, microvascular pericytes play a crucial role in regulating the blood-brain barrier integrity, cerebral blood flow (CBF), and vascular stability. Recent evidence suggests that pericytes are also involved in the tissue repair leading to functional recovery following acute ischemic stroke through the interaction with other cell types constituting the NVU; pericytes may organize CBF recovery, macrophage-mediated clearance of myelin debris, intrainfarct fibrosis, and periinfarct astrogliosis and remyelination. In this review, we will discuss the physiological and pathophysiological functions of pericytes, their involvement in the molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke, and a therapeutic strategy to promote endogenous regeneration.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Tu Y, Li Q, Zhou Y, Ye Z, Wu C, Xie E, Li Y, Li P, Wu Y, Guo Z, Yu C, Zheng J, Gao Y. Empagliflozin inhibits coronary microvascular dysfunction and reduces cardiac pericyte loss in db/db mice. Front Cardiovasc Med 2022; 9:995216. [PMID: 36588571 PMCID: PMC9800791 DOI: 10.3389/fcvm.2022.995216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Coronary microvascular dysfunction (CMD) is a pathophysiological feature of diabetic heart disease. However, whether sodium-glucose cotransporter 2 (SGLT2) inhibitors protect the cardiovascular system by alleviating CMD is not known. Objective We observed the protective effects of empagliflozin (EMPA) on diabetic CMD. Materials and methods The mice were randomly divided into a db/db group and a db/db + EMPA group, and db/m mice served as controls. At 8 weeks of age, the db/db + EMPA group was given empagliflozin 10 mg/(kg⋅d) by gavage for 8 weeks. Body weight, fasting blood glucose and blood pressure were dynamically observed. Cardiac systolic and diastolic function and coronary flow reserve (CFR) were detected using echocardiography. The coronary microvascular structure and distribution of cardiac pericytes were observed using immunofluorescence staining. Picrosirius red staining was performed to evaluate cardiac fibrosis. Results Empagliflozin lowered the increased fasting blood glucose levels of the db/db group. The left ventricular ejection fraction, left ventricular fractional shortening, E/A ratio and E/e' ratio were not significantly different between the three groups. CFR was decreased in the db/db group, but EMPA significantly improved CFR. In contrast to the sparse and abnormal expansion of coronary microvessels observed in the db/db group, the number of coronary microvessels was increased, and the capillary diameter was decreased in the db/db + EMPA group. The number and microvascular coverage of cardiac pericytes were reduced in the db/db mice but were improved by EMPA. The cardiac fibrosis was increased in db/db group and may alleviate by EMPA. Conclusion Empagliflozin inhibited CMD and reduced cardiac pericyte loss in diabetic mice.
Collapse
Affiliation(s)
- Yimin Tu
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Li
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yuanchen Zhou
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zixiang Ye
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Chao Wu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Enmin Xie
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yike Li
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peizhao Li
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yaxin Wu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ziyu Guo
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Changan Yu
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
22
|
Wakisaka M, Nakamura K, Kitazono T. The presence of sodium glucose co-transporter 2 in mesangial cells and pericytes and its roles in mesangial lesions and in capillaries under diabetic and ischemic conditions. Diabetes Res Clin Pract 2022; 192:110096. [PMID: 36174778 DOI: 10.1016/j.diabres.2022.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
SGLT2 is expressed in mesangial cells and pericytes, and is upregulated byhigh glucose and ischemia. Upregulated SGLT2 in both cells might directly worsen ischemia in kidney interstitial legion, heart and brain. The overexpression of SGLT2 in these cells could induce various organ failures via damages or loss of capillaries and dysfunctions of mesangial cells, which are attenuated by SGLT2 inhibitors.
Collapse
Affiliation(s)
- Masanori Wakisaka
- Wakisaka Internal Medicine Clinic, Fujisaki 1-24-19, Sawara-ku, Fukuoka City 914-0013, Japan.
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|