1
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Dickerson JL, Naydenova K, Peet MJ, Wilson H, Nandy B, McMullan G, Morrison R, Russo CJ. Reducing the effects of radiation damage in cryo-EM using liquid helium temperatures. Proc Natl Acad Sci U S A 2025; 122:e2421538122. [PMID: 40261934 PMCID: PMC12054821 DOI: 10.1073/pnas.2421538122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/28/2025] [Indexed: 04/24/2025] Open
Abstract
The physical limit in determining the atomic structure of biological molecules is radiation damage. In electron cryomicroscopy, there have been numerous attempts to reduce the effects of radiation damage by cooling the specimen beyond liquid-nitrogen temperatures, yet all failed to realize the potential improvement for single-particle structure determination. We have identified the physical causes of information loss at liquid-helium temperatures, and overcome them using a combination of nanoscale electron beam illumination and a gold specimen support with 100 nm diameter holes. This combination allowed structure determination where every frame in the exposure contained more information than was available with cryomicroscopy at liquid-nitrogen temperatures, matching expectations from crystal diffraction. Since a 100 nm hole is smaller than the field of view of a typical micrograph, the edges of the foil are directly visible in each micrograph. Protein molecules that are degraded tend to aggregate at the edges of foil holes and can constitute a significant fraction of the micrograph. This and the need for minimal water-foil irradiation will both be important to consider as new cryomicroscopes and specimen supports are developed for imaging molecules at extremely low temperatures where the effects of radiation damage are reduced.
Collapse
Affiliation(s)
- Joshua L. Dickerson
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Katerina Naydenova
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Mathew J. Peet
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Hugh Wilson
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Biplob Nandy
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Greg McMullan
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Robert Morrison
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Christopher J. Russo
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
3
|
Haynes RM, Myers J, López CS, Evans J, Davulcu O, Yoshioka C. A strategic approach for efficient cryo-EM grid optimization using design of experiments. J Struct Biol 2025; 217:108068. [PMID: 38364988 DOI: 10.1016/j.jsb.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
In recent years, cryo-electron microscopy (cryo-EM) has become a practical and effective method of determining structures at previously unattainable resolutions due to advances in detection, automation, and data processing. However, sample preparation remains a major bottleneck in the cryo-EM workflow. Even after the arduous process of biochemical sample optimization, it often takes several iterations of grid vitrification and screening to determine the optimal grid freezing parameters that yield suitable ice thickness and particle distribution for data collection. Since a high-quality sample is imperative for high-resolution structure determination, grid optimization is a vital step. For researchers who rely on cryo-EM facilities for grid screening, each iteration of this optimization process may delay research progress by a matter of months. Therefore, a more strategic and efficient approach should be taken to ensure that the grid optimization process can be completed in as few iterations as possible. Here, we present an implementation of Design of Experiments (DOE) to expedite and strategize the grid optimization process. A Fractional Factorial Design (FFD) guides the determination of a limited set of experimental conditions which can model the full parameter space of interest. Grids are frozen with these conditions and screened for particle distribution and ice thickness. Quantitative scores are assigned to each of these grid characteristics based on a qualitative rubric. Input conditions and response scores are used to generate a least-squares regression model of the parameter space in JMP, which is used to determine the conditions which should, in theory, yield optimal grids. Upon testing this approach on apoferritin and L-glutamate dehydrogenase on both the Vitrobot Mark IV and the Leica GP2 plunge freezers, the resulting grid conditions reliably yielded grids with high-quality ice and particle distribution that were suitable for collecting large overnight datasets on a Krios. We conclude that a DOE-based approach is a cost-effective and time-saving tool for cryo-EM grid preparation.
Collapse
Affiliation(s)
- Rose Marie Haynes
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA; Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Janette Myers
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA
| | - Claudia S López
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA
| | - James Evans
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Omar Davulcu
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA
| | - Craig Yoshioka
- Pacific Northwest Center for Cryo-Electron Microscopy, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
4
|
Ruedas R, Vuillemot R, Tubiana T, Winter JM, Pieri L, Arteni AA, Samson C, Jonic S, Mathieu M, Bressanelli S. Structure and conformational variability of the HER2-trastuzumab-pertuzumab complex. J Struct Biol 2024; 216:108095. [PMID: 38723875 DOI: 10.1016/j.jsb.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Single particle analysis from cryogenic transmission electron microscopy (cryo-EM) is particularly attractive for complexes for which structure prediction remains intractable, such as antibody-antigen complexes. Here we obtain the detailed structure of a particularly difficult complex between human epidermal growth factor receptor 2 (HER2) and the antigen-binding fragments from two distinct therapeutic antibodies binding to distant parts of the flexible HER2, pertuzumab and trastuzumab (HTP). We highlight the strengths and limitations of current data processing software in dealing with various kinds of heterogeneities, particularly continuous conformational heterogeneity, and in describing the motions that can be extracted from our dataset. Our HTP structure provides a more detailed view than the one previously available for this ternary complex. This allowed us to pinpoint a previously overlooked loop in domain IV that may be involved both in binding of trastuzumab and in HER2 dimerization. This finding may contribute to explain the synergistic anticancer effect of the two antibodies. We further propose that the flexibility of the HTP complex, beyond the difficulties it causes for cryo-EM analysis, actually reflects regulation of HER2 signaling and its inhibition by therapeutic antibodies. Notably we obtain our best data with ultra-thin continuous carbon grids, showing that with current cameras their use to alleviate particle misdistribution is compatible with a protein complex of only 162 kDa. Perhaps most importantly, we provide here a dataset for such a smallish protein complex for further development of software accounting for continuous conformational heterogeneity in cryo-EM images.
Collapse
Affiliation(s)
- Rémi Ruedas
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Sanofi, Integrated Drug Discovery, 13, quai Jules Guesde 94403, Vitry-sur-Seine, France
| | - Rémi Vuillemot
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Marie Winter
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015, Paris, France
| | - Laura Pieri
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Camille Samson
- Sanofi, Integrated Drug Discovery, 13, quai Jules Guesde 94403, Vitry-sur-Seine, France
| | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Magali Mathieu
- Sanofi, Integrated Drug Discovery, 13, quai Jules Guesde 94403, Vitry-sur-Seine, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS - Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Westphall M, Lee KW, Hemme C, Salome AZ, Mertz K, Grant T, Coon JJ. Cryogenic Soft Landing Improves Structural Preservation of Protein Complexes. Anal Chem 2023; 95:15094-15101. [PMID: 37732836 PMCID: PMC10568529 DOI: 10.1021/acs.analchem.3c03228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
We describe an apparatus for the cryogenic landing of particles from the ion beam of a mass spectrometer onto transmission electron microscope grids for cryo-electron microscopy. This system also allows for the controlled formation of thin films of amorphous ice on the grid surface. We demonstrate that as compared to room temperature landings, the use of this cryogenic landing device greatly improves the structural preservation of deposited protein-protein complexes. Furthermore, landing under cryogenic conditions can increase the diversity of particle orientations, allowing for improved 3D structural interpretation. We conclude that this approach allows for the direct coupling of mass spectrometry with cryo-electron microscopy.
Collapse
Affiliation(s)
- Michael
S. Westphall
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kenneth W. Lee
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Colin Hemme
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| | - Austin Z. Salome
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Keaton Mertz
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Timothy Grant
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| | - Joshua J. Coon
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
6
|
Westphall MS, Lee KW, Hemme C, Salome AZ, Mertz K, Grant T, Coon JJ. Cryogenic Soft Landing Improves Structural Preservation of Protein Complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550105. [PMID: 37502880 PMCID: PMC10370175 DOI: 10.1101/2023.07.21.550105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We describe an apparatus for the cryogenic landing of particles from the ion beam of a mass spectrometer onto transmission electron microscope grids for cryo-electron microscopy. This system also allows for the controlled formation of thin films of amorphous ice on the grid surface. We demonstrate that as compared to room temperature landings, use of this cryogenic landing device greatly improves the structural preservation of deposited protein-protein complexes. Further, landing under cryogenic conditions can increase the diversity of particle orientations, allowing for improved 3D structural interpretation. Finally, we conclude that this approach allows for the direct coupling of mass spectrometry with cryo-electron microscopy.
Collapse
|
7
|
Neselu K, Wang B, Rice WJ, Potter CS, Carragher B, Chua EY. Measuring the effects of ice thickness on resolution in single particle cryo-EM. J Struct Biol X 2023; 7:100085. [PMID: 36742017 PMCID: PMC9894782 DOI: 10.1016/j.yjsbx.2023.100085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Ice thickness is a critical parameter in single particle cryo-EM - too thin ice can break during imaging or exclude the sample of interest, while ice that is too thick contributes to more inelastic scattering that precludes obtaining high resolution reconstructions. Here we present the practical effects of ice thickness on resolution, and the influence of energy filters, accelerating voltage, or detector mode. We collected apoferritin data with a wide range of ice thicknesses on three microscopes with different instrumentation and settings. We show that on a 300 kV microscope, using a 20 eV energy filter slit has a greater effect on improving resolution in thicker ice; that operating at 300 kV instead of 200 kV accelerating voltage provides significant resolution improvements at an ice thickness above 150 nm; and that on a 200 kV microscope using a detector operating in super resolution mode enables good reconstructions for up to 200 nm ice thickness, while collecting in counting instead of linear mode leads to improvements in resolution for ice of 50-150 nm thickness. Our findings can serve as a guide for users seeking to optimize data collection or sample preparation routines for both single particle and in situ cryo-EM. We note that most in situ data collection is done on samples in a range of ice thickness above 150 nm so these results may be especially relevant to that community.
Collapse
Affiliation(s)
- Kasahun Neselu
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University Grossman School of Medicine, New York, NY, USA
| | - William J. Rice
- Cryo-Electron Microscopy Core, New York University Grossman School of Medicine, New York, NY, USA,Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Clinton S. Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA,Corresponding authors.
| | - Eugene Y.D. Chua
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA,Corresponding authors.
| |
Collapse
|