1
|
Rainaldi J, Mali P, Nourreddine S. Emerging clinical applications of ADAR based RNA editing. Stem Cells Transl Med 2025; 14:szaf016. [PMID: 40418634 DOI: 10.1093/stcltm/szaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/07/2025] [Indexed: 05/28/2025] Open
Abstract
RNA editing via adenosine deaminases acting on RNA (ADARs) offers precise and reversible modifications at the RNA level, complementing traditional DNA-targeting therapies. ADAR enzymes catalyze the conversion of adenosine to inosine within double-stranded RNA, influencing critical cellular processes such as translation, splicing, and RNA stability. Utilizing endogenous ADARs guided by exogenous guide RNAs enables site-specific RNA editing without the need for transgenic editor expression, minimizing immunogenicity, and enhancing control over gene expression. Towards addressing the challenges in ensuring specificity, optimizing delivery methods, and navigating regulatory landscapes, ongoing innovations in guide RNA design, delivery technologies, and computational modeling are propelling the field forward. Already, initial clinical advancements are demonstrating the potential of ADAR-mediated RNA editing in treating human diseases. Collaborative efforts among researchers, clinicians, and industry partners are overcoming existing hurdles, progressively positioning ADAR-mediated RNA editing to revolutionize personalized medicine and provide effective treatments for a wide array of historically intractable diseases.
Collapse
Affiliation(s)
- Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
- Biomedical Sciences PhD Program, University of California San Diego, La Jolla, CA 92093, United States
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
2
|
Mathieu S, Lesch E, Garcia S, Graindorge S, Schallenberg-Rüdinger M, Hammani K. De novo RNA base editing in plant organelles with engineered synthetic P-type PPR editing factors. Nucleic Acids Res 2025; 53:gkaf279. [PMID: 40207624 PMCID: PMC11983096 DOI: 10.1093/nar/gkaf279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
In plant mitochondria and chloroplasts, cytidine-to-uridine RNA editing is necessary for the production of functional proteins. While natural PLS-type PPR proteins are specialized in this process, synthetic PPR proteins offer significant potential for targeted RNA editing. In this study, we engineered chimeric editing factors by fusing synthetic P-type PPR guides with the DYW cytidine deaminase domain of a moss mitochondrial editing factor, PPR56. These designer PPR editors (dPPRe) elicited efficient and precise de novo RNA editing in Escherichia coli as well as in the chloroplasts and mitochondria of Nicotiana benthamiana. Chloroplast transcriptome-wide analysis of the most efficient dPPRe revealed minimal off-target effects, with only three nontarget C sites edited due to sequence similarity with the intended target. This study introduces a novel and precise method for RNA base editing in plant organelles, paving the way for new approaches in gene regulation applicable to plants and potentially other organisms.
Collapse
Affiliation(s)
- Sébastien Mathieu
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Elena Lesch
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, 53115 Bonn, Germany
| | - Shahinez Garcia
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, 53115 Bonn, Germany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
3
|
Ichinose M, Teramoto T, Nakamura I, Shimajiri Y, Yagi Y, Gutmann B. Fine-tuning of the PPR protein directs the RNA editing activity toward C-to-U or U-to-C conversion. Sci Rep 2025; 15:6288. [PMID: 39984571 PMCID: PMC11845758 DOI: 10.1038/s41598-025-90722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
A subfamily of pentatricopeptide repeat (PPR) proteins, known as PPR-DYW:PG, catalyzes the cytidine to uridine (C-to-U) RNA editing in plant organelles. A related PPR subfamily, PPR-DYW:KP, catalyzes the uridine to cytidine (U-to-C) reaction, via a crosslinking mechanism involving a lysine residue. We demonstrate that Lys88 in the DYW:KP domain is essential for the U-to-C editing activity of PPR-DYW:KP proteins. Substituting Lys88 with other amino acids in designer proteins switches the protein activity to C-to-U and prevents crosslinking with the edited RNA. However, this mutation leads to C-to-U off-target editing downstream the targeted site. Finally, other modifications can modulate the catalytic activity and alter the type of reaction catalyzed by the DYW domain. Altogether, our results suggest that subtle modifications in the DYW domain can influence the position of the edited nucleotide and the type of RNA editing reaction.
Collapse
Affiliation(s)
| | | | | | | | - Yusuke Yagi
- EditForce, Inc., Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
4
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Zhang D, Parth F, da Silva LM, Ha TC, Schambach A, Boch J. Engineering a bacterial toxin deaminase from the DYW-family into a novel cytosine base editor for plants and mammalian cells. Genome Biol 2025; 26:18. [PMID: 39901278 PMCID: PMC11789416 DOI: 10.1186/s13059-025-03478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Base editors are precise editing tools that employ deaminases to modify target DNA bases. The DYW-family of cytosine deaminases is structurally and phylogenetically distinct and might be harnessed for genome editing tools. We report a novel CRISPR/Cas9-cytosine base editor using SsdA, a DYW-like deaminase and bacterial toxin. A G103S mutation in SsdA enhances C-to-T editing efficiency while reducing its toxicity. Truncations result in an extraordinarily small enzyme. The SsdA-base editor efficiently converts C-to-T in rice and barley protoplasts and induces mutations in rice plants and mammalian cells. The engineered SsdA is a highly efficient genome editing tool.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
- Research Institute of Biology and Agriculture, University of Science and Technology, Beijing, 100083, China
| | - Fiona Parth
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Laura Matos da Silva
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany.
| |
Collapse
|
6
|
Chun S, Garcia ET, Rejas M, Hayes ML. A Conserved Lysine in an Ion-Pair with a Catalytic Glutamate Is Critical for U-to-C RNA Editing but Restricts C-to-U RNA Editing. Biochemistry 2025; 64:15-19. [PMID: 39653594 PMCID: PMC11713852 DOI: 10.1021/acs.biochem.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Plants make pyrimidine base substitutions in organellar mRNAs through the action of sequence-specific nuclear-encoded enzymes. Pentatricopeptide repeat (PPR) proteins are essential for ensuring specificity, while the enzymatic DYW domain is often present at the C-terminus of a PPR protein and dependent on the variant possessing C-to-U and/or U-to-C RNA editing activities. Expression of exogenous DYW-KP variant enzymes in bacteria leads to the modification of RNAs suggestive of U-to-C base changes. The modified RNAs could only be purified from the interphase of an acidic guanidinium thiocyanate-phenol-chloroform experiment. It was projected that in bacteria stable RNA-enzyme cross-links form from a lysyl attack. In this study, RNA editing was examined for dual U-to-C/C-to-U editing enzyme KP6 with conserved lysine residues substituted by alanine. A single lysine was found to be essential for U-to-C editing and, based on the crystal structures of DYW domains, would likely be present in the active site. Crystal structures also suggest that the lysine can potentially form an ion pair with the catalytic glutamate critical for C-to-U RNA editing. Mutation of lysine to alanine greatly stimulated the C-to-U RNA editing by KP6. A ∼319 Da adduct observed on DYW-KP proteins could not be detected on the U-to-C-deficient lysine to alanine point mutant enzymes. This work establishes the critical role for a single lysine in the DYW-KP domain specifically for U-to-C editing activity but also highlights a secondary role for the lysine in modulating C-to-U editing through the formation of an inhibitory ion pair with the catalytic glutamate.
Collapse
Affiliation(s)
- Skellie
O. Chun
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States
| | - Elvin T. Garcia
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States
| | - Marcela Rejas
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States
| | - Michael L. Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States
| |
Collapse
|
7
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Murase H, Lee J, Togo N, Taniguchi Y, Sasaki S. The selective chemical modification of the 6-amino group of adenosine of the premature termination codon induces readthrough to produce full-length peptide in the reconstituted E. Coli translation system. Bioorg Med Chem 2024; 111:117868. [PMID: 39137475 DOI: 10.1016/j.bmc.2024.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Nonsense mutations in the coding region turn amino acid codons into termination codons, resulting in premature termination codons (PTCs). In the case of the in-frame PTC, if translation does not stop at the PTC but continues to the natural termination codon (NTC) with the insertion of an amino acid, known as readthrough, the full-length peptide is formed, albeit with a single amino acid mutation. We have previously developed the functionality-transfer oligonucleotide (FT-Probe), which forms a hybrid complex with RNA of a complementary sequence to transfer the functional group, resulting in modification of the 4-amino group of cytosine or the 6-amino group of adenine. In this study, the FT-Probe was used to chemically modify the adenosines of the PTC (UAA, UAG, and UGA) of mRNA, which were assayed for the readthrough in a reconstituted Escherichia coli translation system. The third adenosine-modified UAA produced three readthrough peptides incorporating tyrosine, glutamine and lysine at the UAA site. It should be noted that the additional modification with a cyclodextrin only induced glutamine incorporation. The adenosine modified UGA induced readthrough very efficiently with selective tryptophan incorporation. Readthrough of the modified UGA is caused by inhibition of the RF2 function. This study has demonstrated that the chemical modification of the adenosine 6-amino group of the PTC is a strategy for effective readthrough in a prokaryotic translation system.
Collapse
Affiliation(s)
- Hirotaka Murase
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan; RINAT Imaging, Inc., 1-1, Kurume Hundred Years Park, Kurume 839-0064, Japan
| | - Jeongsu Lee
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan
| | - Norihiro Togo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yosuke Taniguchi
- RINAT Imaging, Inc., 1-1, Kurume Hundred Years Park, Kurume 839-0064, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan; RINAT Imaging, Inc., 1-1, Kurume Hundred Years Park, Kurume 839-0064, Japan.
| |
Collapse
|
9
|
Hayes ML, Garcia ET, Chun SO, Selke M. Crosslinking of base-modified RNAs by synthetic DYW-KP base editors implicates an enzymatic lysine as the nitrogen donor for U-to-C RNA editing. J Biol Chem 2024; 300:107454. [PMID: 38852885 PMCID: PMC11332814 DOI: 10.1016/j.jbc.2024.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
Sequence-specific cytidine to uridine (C-to-U) and adenosine to inosine editing tools can alter RNA and DNA sequences and utilize a hydrolytic deamination mechanism requiring an active site zinc ion and a glutamate residue. In plant organelles, DYW-PG domain containing enzymes catalyze C-to-U edits through the canonical deamination mechanism. Proteins developed from consensus sequences of the related DYW-KP domain family catalyze what initially appeared to be uridine to cytidine (U-to-C) edits leading to this investigation into the U-to-C editing mechanism. The synthetic DYW-KP enzyme KP6 was found sufficient for C-to-U editing activity stimulated by the addition of carboxylic acids in vitro. Despite addition of putative amine/amide donors, U-to-C editing by KP6 could not be observed in vitro. C-to-U editing was found not to be concomitant with U-to-C editing, discounting a pyrimidine transaminase mechanism. RNAs containing base modifications were highly enriched in interphase fractions consistent with covalent crosslinks to KP6, KP2, and KP3 proteins. Mass spectrometry of purified KP2 and KP6 proteins revealed secondary peaks with mass shifts of 319 Da. A U-to-C crosslinking mechanism was projected to explain the link between crosslinking, RNA base changes, and the ∼319 Da mass. In this model, an enzymatic lysine attacks C4 of uridine to form a Schiff base RNA-protein conjugate. Sequenced RT-PCR products from the fern Ceratopteris richardii indicate U-to-C base edits do not preserve proteinaceous crosslinks in planta. Hydrolysis of a protonated Schiff base conjugate releasing cytidine is hypothesized to explain the completed pathway in plants.
Collapse
Affiliation(s)
- Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA.
| | - Elvin T Garcia
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| | - Skellie O Chun
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Kwok van der Giezen FM, Viljoen A, Campbell-Clause L, Dao NT, Colas des Francs-Small C, Small I. Insights into U-to-C RNA editing from the lycophyte Phylloglossum drummondii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:445-459. [PMID: 38652016 DOI: 10.1111/tpj.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The lycophyte Phylloglossum drummondii is the sole inhabitant of its genus in the Huperzioideae group and one of a small minority of plants which perform uridine to cytidine RNA editing. We assembled the P. drummondii chloroplast and mitochondrial genomes and used RNA sequence data to build a comprehensive profile of organellar RNA editing events. In addition to many C-to-U editing events in both organelles, we found just four U-to-C editing events in the mitochondrial transcripts cob, nad1, nad5 and rpl2. These events are conserved in related lycophytes in the genera Huperzia and Phlegmariurus. De novo transcriptomes for three of these lycophytes were assembled to search for putative U-to-C RNA editing enzymes. Four putative U-to-C editing factors could be matched to the four mitochondrial U-to-C editing sites. Due to the unusually few numbers of U-to-C RNA editing sites, P. drummondii and related lycophytes are useful models for studying this poorly understood mechanism.
Collapse
Affiliation(s)
- Farley M Kwok van der Giezen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Amy Viljoen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Leni Campbell-Clause
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nhan Trong Dao
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
11
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Song J, Luo N, Dong L, Peng J, Yi C. RNA base editors: The emerging approach of RNA therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1844. [PMID: 38576085 DOI: 10.1002/wrna.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
RNA-based therapeutics offer a flexible and reversible approach for treating genetic disorders, such as antisense oligonucleotides, RNA interference, aptamers, mRNA vaccines, and RNA editing. In recent years, significant advancements have been made in RNA base editing to correct disease-relevant point mutations. These achievements have significantly influenced the fields of biotechnology, biomedical research and therapeutics development. In this article, we provide a comprehensive overview of the design and performance of contemporary RNA base editors, including A-to-I, C-to-U, A-to-m6A, and U-to-Ψ. We compare recent innovative developments and highlight their applications in disease-relevant contexts. Lastly, we discuss the limitations and future prospects of utilizing RNA base editing for therapeutic purposes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Nan Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Liting Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| |
Collapse
|
13
|
Song J, Zhuang Y, Yi C. Programmable RNA base editing via targeted modifications. Nat Chem Biol 2024; 20:277-290. [PMID: 38418907 DOI: 10.1038/s41589-023-01531-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editors are powerful tools in biology and hold great promise for the treatment of human diseases. Advanced DNA base editing tools, such as cytosine base editor and adenine base editor, have been developed to correct permanent mistakes in genetic material. However, undesired off-target edits would also be permanent, which poses a considerable risk for therapeutics. Alternatively, base editing at the RNA level is capable of correcting disease-causing mutations but does not lead to lasting genotoxic effects. RNA base editors offer temporary and reversible therapies and have been catching on in recent years. Here, we summarize some emerging RNA editors based on A-to-inosine, C-to-U and U-to-pseudouridine changes. We review the programmable RNA-targeting systems as well as modification enzyme-based effector proteins and highlight recent technological breakthroughs. Finally, we compare editing tools, discuss limitations and opportunities, and provide insights for the future directions of RNA base editing.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Lin Y, Kwok S, Hein AE, Thai BQ, Alabi Y, Ostrowski MS, Wu K, Floor SN. RNA molecular recording with an engineered RNA deaminase. Nat Methods 2023; 20:1887-1899. [PMID: 37857907 PMCID: PMC11497829 DOI: 10.1038/s41592-023-02046-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
RNA deaminases are powerful tools for base editing and RNA molecular recording. However, the enzymes used in currently available RNA molecular recorders such as TRIBE, DART or STAMP have limitations due to RNA structure and sequence dependence. We designed a platform for directed evolution of RNA molecular recorders. We engineered an RNA A-to-I deaminase (an RNA adenosine base editor, rABE) that has high activity, low bias and low background. Using rABE, we present REMORA (RNA-encoded molecular recording in adenosines), wherein deamination by rABE writes a molecular record of RNA-protein interactions. By combining rABE with the C-to-U deaminase APOBEC1 and long-read RNA sequencing, we measured binding by two RNA-binding proteins on single messenger RNAs. Orthogonal RNA molecular recording of mammalian Pumilio proteins PUM1 and PUM2 shows that PUM1 competes with PUM2 for a subset of sites in cells. Furthermore, we identify transcript isoform-specific RNA-protein interactions driven by isoform changes distal to the binding site. The genetically encodable RNA deaminase rABE enables single-molecule identification of RNA-protein interactions with cell type specificity.
Collapse
Affiliation(s)
- Yizhu Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Samentha Kwok
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail E Hein
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bao Quoc Thai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- MSTP Program, University of Arizona, Tuscon, AZ, USA
| | - Yewande Alabi
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Megan S Ostrowski
- Gladstone Institute for Data Science and Biotechnology, San Francisco, CA, USA
| | - Ke Wu
- Gladstone Institute for Data Science and Biotechnology, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Kofman E, Yee B, Medina-Munoz HC, Yeo GW. FLARE: a fast and flexible workflow for identifying RNA editing foci. BMC Bioinformatics 2023; 24:370. [PMID: 37784060 PMCID: PMC10544219 DOI: 10.1186/s12859-023-05452-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Fusion of RNA-binding proteins (RBPs) to RNA base-editing enzymes (such as APOBEC1 or ADAR) has emerged as a powerful tool for the discovery of RBP binding sites. However, current methods that analyze sequencing data from RNA-base editing experiments are vulnerable to false positives due to off-target editing, genetic variation and sequencing errors. RESULTS We present FLagging Areas of RNA-editing Enrichment (FLARE), a Snakemake-based pipeline that builds on the outputs of the SAILOR edit site discovery tool to identify regions statistically enriched for RNA editing. FLARE can be configured to analyze any type of RNA editing, including C to U and A to I. We applied FLARE to C-to-U editing data from a RBFOX2-APOBEC1 STAMP experiment, to show that our approach attains high specificity for detecting RBFOX2 binding sites. We also applied FLARE to detect regions of exogenously introduced as well as endogenous A-to-I editing. CONCLUSIONS FLARE is a fast and flexible workflow that identifies significantly edited regions from RNA-seq data. The FLARE codebase is available at https://github.com/YeoLab/FLARE .
Collapse
Affiliation(s)
- Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hugo C Medina-Munoz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Yi J, Zhang M, Zhu L, Xu C, Li B, Wu P, Wu H, Zhang B. High-efficiency genetic engineering toolkit for virus based on lambda red-mediated recombination. Biotechnol Lett 2023; 45:1327-1337. [PMID: 37526868 DOI: 10.1007/s10529-023-03412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Viruses, such as Ebola virus (EBOV), evolve rapidly and threaten the human health. There is a great demand to exploit efficient gene-editing techniques for the identification of virus to probe virulence mechanism for drug development. METHODS Based on lambda Red recombination in Escherichia coli (E. coli), counter-selection, and in vitro annealing, a high-efficiency genetic method was utilized here for precisely engineering viruses. EBOV trVLPs assay and dual luciferase reporter assay were used to further test the effect of mutations on virus replication. RESULTS Considering the significance of matrix protein VP24 in EBOV replication, the types of mutations within vp24, including several single-base substitutions, one double-base substitution, two seamless deletions, and one targeted insertion, were generated on the multi-copy plasmid of E. coli. Further, the length of the homology arms for recombination and in vitro annealing, and the amount of DNA cassettes and linear plasmids were optimized to create a more elaborate and cost-efficient protocol than original approach. The effects of VP24 mutations on the expression of a reporter gene (luciferase) from the EBOV minigenome were determined, and results indicated that mutations of key sites within VP24 have significant impacts on EBOV replication. CONCLUSION This precise mutagenesis method will facilitate effective and simple editing of viral genes in E. coli.
Collapse
Affiliation(s)
- Jing Yi
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Maifei Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Lin Zhu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Changzhi Xu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Binglin Li
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Panpan Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China.
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| |
Collapse
|
17
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
18
|
Xie Y, Chan PL, Kwan HS, Chang J. The Genome-Wide Characterization of Alternative Splicing and RNA Editing in the Development of Coprinopsis cinerea. J Fungi (Basel) 2023; 9:915. [PMID: 37755023 PMCID: PMC10532568 DOI: 10.3390/jof9090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Coprinopsis cinerea is one of the model species used in fungal developmental studies. This mushroom-forming Basidiomycetes fungus has several developmental destinies in response to changing environments, with dynamic developmental regulations of the organism. Although the gene expression in C. cinerea development has already been profiled broadly, previous studies have only focused on a specific stage or process of fungal development. A comprehensive perspective across different developmental paths is lacking, and a global view on the dynamic transcriptional regulations in the life cycle and the developmental paths is far from complete. In addition, knowledge on co- and post-transcriptional modifications in this fungus remains rare. In this study, we investigated the transcriptional changes and modifications in C. cinerea during the processes of spore germination, vegetative growth, oidiation, sclerotia formation, and fruiting body formation by inducing different developmental paths of the organism and profiling the transcriptomes using the high-throughput sequencing method. Transition in the identity and abundance of expressed genes drive the physiological and morphological alterations of the organism, including metabolism and multicellularity construction. Moreover, stage- and tissue-specific alternative splicing and RNA editing took place and functioned in C. cinerea. These modifications were negatively correlated to the conservation features of genes and could provide extra plasticity to the transcriptome during fungal development. We suggest that C. cinerea applies different molecular strategies in its developmental regulation, including shifts in expressed gene sets, diversifications of genetic information, and reversible diversifications of RNA molecules. Such features would increase the fungal adaptability in the rapidly changing environment, especially in the transition of developmental programs and the maintenance and balance of genetic and transcriptomic divergence. The multi-layer regulatory network of gene expression serves as the molecular basis of the functioning of developmental regulation.
Collapse
Affiliation(s)
- Yichun Xie
- State Key Laboratory of Agrobiotechnology, Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;
| | - Po-Lam Chan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi-Shan Kwan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jinhui Chang
- Department of Food Science and Nutrition, and Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
19
|
Yang Y, Ritzenhofen K, Otrzonsek J, Xie J, Schallenberg-Rüdinger M, Knoop V. Beyond a PPR-RNA recognition code: Many aspects matter for the multi-targeting properties of RNA editing factor PPR56. PLoS Genet 2023; 19:e1010733. [PMID: 37603555 PMCID: PMC10482289 DOI: 10.1371/journal.pgen.1010733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/06/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023] Open
Abstract
The mitochondrial C-to-U RNA editing factor PPR56 of the moss Physcomitrium patens is an RNA-binding pentatricopeptide repeat protein equipped with a terminal DYW-type cytidine deaminase domain. Transferred into Escherichia coli, PPR56 works faithfully on its two native RNA editing targets, nad3eU230SL and nad4eU272SL, and also converts cytidines into uridines at over 100 off-targets in the bacterial transcriptome. Accordingly, PPR56 is attractive for detailed mechanistic studies in the heterologous bacterial setup, allowing for scoring differential RNA editing activities of many target and protein variants in reasonable time. Here, we report (i) on the effects of numerous individual and combined PPR56 protein and target modifications, (ii) on the spectrum of off-target C-to-U editing in the bacterial background transcriptome for PPR56 and two variants engineered for target re-direction and (iii) on combinations of targets in tandem or separately at the 5'- and 3'-ends of large mRNAs. The latter experimentation finds enhancement of RNA editing at weak targets in many cases, including cox3eU290SF as a new candidate mitogenome target. We conclude that C-to-U RNA editing can be much enhanced by transcript features also outside the region ultimately targeted by PPRs of a plant editing factor, possibly facilitated by its enrichment or scanning along transcripts.
Collapse
Affiliation(s)
- Yingying Yang
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Kira Ritzenhofen
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Jessica Otrzonsek
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Jingchan Xie
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | | | - Volker Knoop
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| |
Collapse
|
20
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
21
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
22
|
Lei Z, Meng H, Zhuang Y, Zhu Q, Yi C. Chemical and Biological Approaches to Interrogate off-Target Effects of Genome Editing Tools. ACS Chem Biol 2023; 18:205-217. [PMID: 36731114 DOI: 10.1021/acschembio.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Various genome editing tools have been developed for programmable genome manipulation at specified genomic loci. However, it is crucial to comprehensively interrogate the off-target effect induced by these genome editing tools, especially when apply them onto the therapeutic applications. Here, we outlined the off-target effect that has been observed for various genome editing tools. We also reviewed detection methods to determine or evaluate the off-target editing, and we have discussed their advantages and limitations. Additionally, we have summarized current RNA editing tools for RNA therapy and medicine that may serve as alternative approaches for genome editing tools in both research and clinical applications.
Collapse
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
| | - Yuan Zhuang
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing100871, China
| | - Qingguo Zhu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China.,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China.,Peking University Genome Editing Research Center, Peking University, Beijing100871, China
| |
Collapse
|
23
|
Construction of a Versatile, Programmable RNA-Binding Protein Using Designer PPR Proteins and Its Application for Splicing Control in Mammalian Cells. Cells 2022; 11:cells11223529. [PMID: 36428958 PMCID: PMC9688318 DOI: 10.3390/cells11223529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
RNAs play many essential roles in gene expression and are involved in various human diseases. Although genome editing technologies have been established, the engineering of sequence-specific RNA-binding proteins that manipulate particular cellular RNA molecules is immature, in contrast to nucleotide-based RNA manipulation technology, such as siRNA- and RNA-targeting CRISPR/Cas. Here, we demonstrate a versatile RNA manipulation technology using pentatricopeptide-repeat (PPR)-motif-containing proteins. First, we developed a rapid construction and evaluation method for PPR-based designer sequence-specific RNA-binding proteins. This system has enabled the steady construction of dozens of functional designer PPR proteins targeting long 18 nt RNA, which targets a single specific RNA in the mammalian transcriptome. Furthermore, the cellular functionality of the designer PPR proteins was first demonstrated by the control of alternative splicing of either a reporter gene or an endogenous CHK1 mRNA. Our results present a versatile protein-based RNA manipulation technology using PPR proteins that facilitates the understanding of unknown RNA functions and the creation of gene circuits and has potential for use in future therapeutics.
Collapse
|
24
|
Loiacono FV, Walther D, Seeger S, Thiele W, Gerlach I, Karcher D, Schöttler MA, Zoschke R, Bock R. Emergence of Novel RNA-Editing Sites by Changes in the Binding Affinity of a Conserved PPR Protein. Mol Biol Evol 2022; 39:6760358. [PMID: 36227729 PMCID: PMC9750133 DOI: 10.1093/molbev/msac222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023] Open
Abstract
RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.
Collapse
Affiliation(s)
- F Vanessa Loiacono
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stefanie Seeger
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|