1
|
Han X, Wu X, Zhang Y, Tang Q, Zeng L, Liu Y, Xiang Y, Hou K, Fang S, Lei W, Li H, Tang S, Zhao H, Peng Y, Yao X, Guo T, Zhang YM, Guo L. Genetic and transcriptome analyses of the effect of genotype-by-environment interactions on Brassica napus seed oil content. THE PLANT CELL 2025; 37:koaf062. [PMID: 40138370 PMCID: PMC11979334 DOI: 10.1093/plcell/koaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
The molecular basis underlying crop traits is complex, with gene-by-environment interactions (GEIs) affecting phenotypes. However, quantitative trait nucleotide (QTN)-by-environment interactions (QEIs) and GEIs for seed oil content (SOC) in oil crops are rare. Here, we detected 11 environmentally specific and 10 stable additive QTNs and 11 QEIs for SOC in rapeseed (Brassica napus) using genome-wide association studies. Weighted gene co-expression network analysis identified 8 Environmental-Developmental Gene co-expression Modules for which the eigengenes correlated with SOC and the environment explained a large proportion of the variance in gene expression. By incorporating information from the multi-omics dataset, 17 candidate genes and 11 candidate GEIs for SOC were predicted. We mined 1 GEI candidate, LIGHT-DEPENDENT SHORT HYPOCOTYLS5 (LSH5), around the environmentally specific QTN qspOC.A02.1 and QEI qeOC.A02.1 detected by climatic indices as covariates. BnaA02.LSH5 was highly expressed in early seed development, and its expression varied significantly across planting sites, with a trend opposite to light-related climatic indices. The BnaA02.lsh5 and BnaC02.lsh5 double mutants had lower SOC, hypocotyl length, photosynthesis, and carbon- and energy-related metabolites compared with wild type. Moreover, BnaA02.LSH5 transcriptionally directly repressed BnaA02.pMDH2 in fatty acid β-oxidation and photosynthetic electron transport. We propose that BnaLSH5 affects seed oil accumulation in response to light intensity. This study provides a basis for creating high-oil germplasm that is adapted to specific environments.
Collapse
Affiliation(s)
- Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowei Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yawen Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingju Zeng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhao Liu
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yuyan Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Keqin Hou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixia Lei
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Haojie Li
- Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Peng
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Tingting Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
2
|
Upadhyaya G, Sethi V, Modak A, Gangappa SN. ALOG/LSHs: a novel class of transcription factors that regulate plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:836-850. [PMID: 39361138 DOI: 10.1093/jxb/erae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/01/2024] [Indexed: 02/09/2025]
Abstract
The ARABIDOPSIS LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and rice G1/LIGHT-DEPENDENT SHORT HYPOCOTYLS (ALOG/LSH) group proteins are highly conserved across plant lineages from moss to higher flowering plants, suggesting their crucial role in the evolution and adaptation of land plants. The role of ALOG/LSH proteins is highly conserved in various developmental responses, such as vegetative and reproductive developmental programs. Their role in meristem identity, cotyledon development, seedling photomorphogenesis, and leaf and shoot development has been relatively well established. Moreover, several key pieces of evidence suggest their role in inflorescence architecture and flower development, including male and female reproductive organs and flower colouration. Recent research has started to explore their role in stress response. Functionally, ALOG/LSH proteins have been demonstrated to act as transcriptional regulators and are considered a newly emerging class of transcription factors in plants that regulate diverse developmental and physiological processes. This review aims to stimulate discussion about their role in plant development and as transcription factors. It also seeks to further unravel the underlying molecular mechanism by which they regulate growth and development throughout the plant lineage.
Collapse
Affiliation(s)
- Gouranga Upadhyaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Vishmita Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Annayasa Modak
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sreeramaiah N Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
3
|
Lima AC, da Silva Andrade SC, Gerolamo CS, de Souza DT, Coutinho LL, Rossi M, Angyalossy V. Liana attachment to supports leads to profound changes in xylem anatomy and transcriptional profile of cambium and differentiating xylem. PLANT, CELL & ENVIRONMENT 2024; 47:5172-5188. [PMID: 39169844 DOI: 10.1111/pce.15094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/18/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
Wood serves crucial functions in plants, yet our understanding of the mechanisms governing the composition, arrangement, and dimensions of its cells remains limited. The abrupt transition from nonlianescent to lianescent xylem in lianas represents an excellent model to address the underlying mechanisms, although consistent triggering factors for this process remain uncertain. In this study we examined how physical support attachment impacts the development of lianescent xylem in Bignonia magnifica (Bignoniaceae), employing a comprehensive approach integrating detailed anatomical analysis with gene expression profiling of cambium and differentiating xylem. Our findings demonstrate that attachment to physical supports triggers the formation of lianescent xylem, leading to increased vessel size, broader vessel distribution, reduced fibre content, and higher potential specific water conductivity than nonlianescent xylem. These shifts in wood anatomy coincide with the downregulation of genes associated with cell division and cell wall biosynthesis, and the upregulation of transcription factors, defense/cell death, and hormone-responsive genes in the lianescent xylem. Our findings provide insights into the regulation of xylem differentiation, driven by response to environmental stimuli. Additionally, they shed light on the mechanisms underlying the adaptation of lianas to climbing.
Collapse
Affiliation(s)
- André Carvalho Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Caian Souza Gerolamo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Diego Trindade de Souza
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Piracicaba, Universidade de São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Vogel K, Isono E. Erasing marks: Functions of plant deubiquitylating enzymes in modulating the ubiquitin code. THE PLANT CELL 2024; 36:3057-3073. [PMID: 38656977 PMCID: PMC11371157 DOI: 10.1093/plcell/koae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Plant cells need to respond to environmental stimuli and developmental signals accurately and promptly. Ubiquitylation is a reversible posttranslational modification that enables the adaptation of cellular proteostasis to internal or external factors. The different topologies of ubiquitin linkages serve as the structural basis for the ubiquitin code, which can be interpreted by ubiquitin-binding proteins or readers in specific processes. The ubiquitylation status of target proteins is regulated by ubiquitylating enzymes or writers, as well as deubiquitylating enzymes (DUBs) or erasers. DUBs can remove ubiquitin molecules from target proteins. Arabidopsis (A. thaliana) DUBs belong to 7 protein families and exhibit a wide range of functions and play an important role in regulating selective protein degradation processes, including proteasomal, endocytic, and autophagic protein degradation. DUBs also shape the epigenetic landscape and modulate DNA damage repair processes. In this review, we summarize the current knowledge on DUBs in plants, their cellular functions, and the molecular mechanisms involved in the regulation of plant DUBs.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| |
Collapse
|
5
|
Hata Y, Ohtsuka J, Hiwatashi Y, Naramoto S, Kyozuka J. Cytokinin and ALOG proteins regulate pluripotent stem cell identity in the moss Physcomitrium patens. SCIENCE ADVANCES 2024; 10:eadq6082. [PMID: 39196946 PMCID: PMC11352904 DOI: 10.1126/sciadv.adq6082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
The shoot apical meristem (SAM) contains pluripotent stem cells that produce all the aerial parts of the plant. Stem cells undergo asymmetric cell divisions to self-renew and to produce differentiating cells. Our research focused on unraveling the mechanisms governing the specification of these two distinct cell fates following the stem cell division. For this purpose, we used the model organism Physcomitrium patens, which features a singular pluripotent stem cell known as the gametophore apical cell. We show that the activity of cytokinins, critical stem cell regulators, is restricted to the gametophore apical cell due to the specific localization of PpLOG, the enzyme responsible for cytokinin activation. In turn, PpTAW, which promotes differentiating cell identity of the merophyte, is excluded from the gametophore apical cell by the action of cytokinins. We propose a cytokinin-based model for the establishment of asymmetry in the pluripotent stem cell division.
Collapse
Affiliation(s)
- Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Juri Ohtsuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Liu Z, Fan Z, Wang L, Zhang S, Xu W, Zhao S, Fang S, Liu M, Kofi SM, Zhang S, Kang N, Ai H, Li R, Feng T, Wei S, Zhao H. Expression profiling of ALOG family genes during inflorescence development and abiotic stress responses in rice ( Oryza sativa L.). Front Genet 2024; 15:1381690. [PMID: 38650857 PMCID: PMC11033443 DOI: 10.3389/fgene.2024.1381690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The ALOG (Arabidopsis LSH1 and Oryza G1) family proteins, namely, DUF640 domain-containing proteins, have been reported to function as transcription factors in various plants. However, the understanding of the response and function of ALOG family genes during reproductive development and under abiotic stress is still largely limited. In this study, we comprehensively analyzed the structural characteristics of ALOG family proteins and their expression profiles during inflorescence development and under abiotic stress in rice. The results showed that OsG1/OsG1L1/2/3/4/5/6/7/8/9 all had four conserved helical structures and an inserted Zinc-Ribbon (ZnR), the other four proteins OsG1L10/11/12/13 lacked complete Helix-1 and Helix-2. In the ALOG gene promoters, there were abundant cis-acting elements, including ABA, MeJA, and drought-responsive elements. Most ALOG genes show a decrease in expression levels within 24 h under ABA and drought treatments, while OsG1L2 expression levels show an upregulated trend under ABA and drought treatments. The expression analysis at different stages of inflorescence development indicated that OsG1L1/2/3/8/11 were mainly expressed in the P1 stage; in the P4 stage, OsG1/OsG1L4/5/9/12 had a higher expression level. These results lay a good foundation for further studying the expression of rice ALOG family genes under abiotic stresses, and provide important experimental support for their functional research.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Zhenjiang Fan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Lei Wang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Siyue Zhang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Weichen Xu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Sijie Zhao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Sijia Fang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Mei Liu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Sackitey Mark Kofi
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuangxi Zhang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Ningning Kang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Ruining Li
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Tingting Feng
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuya Wei
- College of Bioengineering, Wuhan Polytechnic University, Wuhan, China
| | - Heming Zhao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
7
|
Rieu P, Beretta VM, Caselli F, Thévénon E, Lucas J, Rizk M, Franchini E, Caporali E, Paleni C, Nanao MH, Kater MM, Dumas R, Zubieta C, Parcy F, Gregis V. The ALOG domain defines a family of plant-specific transcription factors acting during Arabidopsis flower development. Proc Natl Acad Sci U S A 2024; 121:e2310464121. [PMID: 38412122 PMCID: PMC10927535 DOI: 10.1073/pnas.2310464121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024] Open
Abstract
The ALOG (Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 (LSH1) and Oryza G1) proteins are conserved plant-specific Transcription Factors (TFs). They play critical roles in the development of various plant organs (meristems, inflorescences, floral organs, and nodules) from bryophytes to higher flowering plants. Despite the fact that the first members of this family were originally discovered in Arabidopsis, their role in this model plant has remained poorly characterized. Moreover, how these transcriptional regulators work at the molecular level is unknown. Here, we study the redundant function of the ALOG proteins LSH1,3,4 from Arabidopsis. We uncover their role in the repression of bract development and position them within a gene regulatory network controlling this process and involving the floral regulators LEAFY, BLADE-ON-PETIOLE, and PUCHI. Next, using in vitro genome-wide studies, we identified the conserved DNA motif bound by ALOG proteins from evolutionarily distant species (the liverwort Marchantia polymorpha and the flowering plants Arabidopsis, tomato, and rice). Resolution of the crystallographic structure of the ALOG DNA-binding domain in complex with DNA revealed the domain is a four-helix bundle with a disordered NLS and a zinc ribbon insertion between helices 2 and 3. The majority of DNA interactions are mediated by specific contacts made by the third alpha helix and the NLS. Taken together, this work provides the biochemical and structural basis for DNA-binding specificity of an evolutionarily conserved TF family and reveals its role as a key player in Arabidopsis flower development.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | | | - Francesca Caselli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Emmanuel Thévénon
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Mahmoud Rizk
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble38000, France
| | - Emanuela Franchini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Chiara Paleni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Max H. Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble38000, France
| | - Martin M. Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Renaud Dumas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Chloe Zubieta
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| |
Collapse
|