1
|
Zhu S, Zhang R, Yao L, Lin Z, Li Y, Li S, Wu L. De novo NAD + synthesis is ineffective for NAD + supply in axenically cultured Caenorhabditis elegans. Commun Biol 2025; 8:545. [PMID: 40175694 PMCID: PMC11965519 DOI: 10.1038/s42003-025-07984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/22/2025] [Indexed: 04/04/2025] Open
Abstract
To secure an adequate nicotinamide adenine dinucleotide (NAD+) supply for survival, organisms typically rely on two complementary mechanisms: the de novo synthesis pathway and the salvage pathway. Notably, the classic quinolinic acid phosphoribosyltransferase (QPRTase) for de novo NAD+ synthesis is absent in Caenorhabditis elegans (C. elegans), despite the reported alternative mechanism involving uridine monophosphate phosphoribosyltransferase (UMPS). However, the effectiveness of this proposed mechanism for NAD+ production of C. elegans remains unclear. Here, using a chemically defined medium, we observed that removing NAD+ salvage precursors from the medium results in a significant decrease in NAD+ levels, causing severe developmental delay and fecundity loss in C. elegans. Strikingly, these defects cannot be restored by any metabolites from the de novo synthesis pathway, including the direct QPRTase substrate quinolinic acid (QA). Furthermore, the deficiency of umps-1 does not cause any significant changes in the NAD+ levels of C. elegans. Moreover, the growth defects of the umps-1 mutant could be rescued by uridine, but not the salvage NAD+ supply. Additionally, we discovered that commercially available QA products contain substantial amounts of nicotinic acid, potentially producing misleading information. Collectively, our results demonstrate that C. elegans lacks the necessary mechanisms for de novo synthesis of NAD+.
Collapse
Affiliation(s)
- Shihao Zhu
- Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Runshuai Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luxia Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhirong Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yanjie Li
- Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Siyuan Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lianfeng Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Yao L, Wang L, Zhang R, Soukas AA, Wu L. The direct targets of metformin in diabetes and beyond. Trends Endocrinol Metab 2025; 36:364-372. [PMID: 39227192 DOI: 10.1016/j.tem.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Metformin, an oral antihyperglycemic drug that has been in use for over 60 years, remains a first-line therapy for type 2 diabetes (T2D). Numerous studies have suggested that metformin promotes health benefits beyond T2D management, including weight loss, cancer prevention and treatment, and anti-aging, through several proposed mechanistic targets. Here we discuss the established effects of metformin and the progress made in identifying its direct targets. Additionally, we emphasize the importance of elucidating the structural bases of the drug and its direct targets. Ultimately, this review aims to highlight the current state of knowledge regarding metformin and its related emerging discoveries, while also outlining critical future research directions.
Collapse
Affiliation(s)
- Luxia Yao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lei Wang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Runshuai Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Lianfeng Wu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Chan JCN, Yang A, Chu N, Chow E. Current type 2 diabetes guidelines: Individualized treatment and how to make the most of metformin. Diabetes Obes Metab 2024; 26 Suppl 3:55-74. [PMID: 38992869 DOI: 10.1111/dom.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
Evidence-based guidelines provide the premise for the delivery of quality care to preserve health and prevent disabilities and premature death. The systematic gathering of observational, mechanistic and experimental data contributes to the hierarchy of evidence used to guide clinical practice. In the field of diabetes, metformin was discovered more than 100 years ago, and with 60 years of clinical use, it has stood the test of time regarding its value in the prevention and management of type 2 diabetes. Although some guidelines have challenged the role of metformin as the first-line glucose-lowering drug, it is important to point out that the cardiovascular-renal protective effects of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists were gathered from patients with type 2 diabetes, the majority of whom were treated with metformin. Most national, regional and international guidelines recommend metformin as a foundation therapy with emphasis on avoidance of therapeutic inertia and early attainment of multiple treatment goals. Moreover, real-world evidence has confirmed the glucose-lowering and cardiovascular-renal benefits of metformin accompanied by an extremely low risk of lactic acidosis. In patients with type 2 diabetes and advanced chronic kidney disease (estimated glomerular filtration rate 15-30 mL/min/1.73m2), metformin discontinuation was associated with an increased risk of cardiovascular-renal events compared with metformin persistence. Meanwhile, it is understood that microbiota, nutrients and metformin can interact through the gut-brain-kidney axis to modulate homeostasis of bioactive molecules, systemic inflammation and energy metabolism. While these biological changes contribute to the multisystem effects of metformin, they may also explain the gastrointestinal side effects and vitamin B12 deficiency associated with metformin intolerance. By understanding the interactions between metformin, foods and microbiota, healthcare professionals are in a better position to optimize the use of metformin and mitigate potential side effects. The United Kingdom Prospective Diabetes Study and the Da Qing Diabetes Prevention Program commenced 40 years ago provided the first evidence that type 2 diabetes is preventable and treatable. To drive real-world impact from this evidence, payors, practitioners and planners need to co-design and implement an integrated, data-driven, metformin-based programme to detect people with undiagnosed diabetes and prediabetes (intermediate hyperglycaemia), notably impaired glucose tolerance, for early intervention. The systematic data collection will create real-world evidence to bring out the best of metformin and make healthcare sustainable, affordable and accessible.
Collapse
Affiliation(s)
- Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Natural Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
4
|
Wu CY, Davis S, Saudagar N, Shah S, Zhao W, Stern A, Martel J, Ojcius D, Yang HC. Caenorhabditis elegans as a Convenient Animal Model for Microbiome Studies. Int J Mol Sci 2024; 25:6670. [PMID: 38928375 PMCID: PMC11203780 DOI: 10.3390/ijms25126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Microbes constitute the most prevalent life form on Earth, yet their remarkable diversity remains mostly unrecognized. Microbial diversity in vertebrate models presents a significant challenge for investigating host-microbiome interactions. The model organism Caenorhabditis elegans has many advantages for delineating the effects of host genetics on microbial composition. In the wild, the C. elegans gut contains various microbial species, while in the laboratory it is usually a host for a single bacterial species. There is a potential host-microbe interaction between microbial metabolites, drugs, and C. elegans phenotypes. This mini-review aims to summarize the current understanding regarding the microbiome in C. elegans. Examples using C. elegans to study host-microbe-metabolite interactions are discussed.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
| | - Scott Davis
- Department of Endodontics, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Neekita Saudagar
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - Shrey Shah
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - William Zhao
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
| | - David Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30041, Taiwan
| |
Collapse
|
5
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
6
|
Zhu X, Xia Y, Wang H, Shi L, Yin H, Gu M, Yan F. PM 2.5 induced neurotoxicity through unbalancing vitamin B12 metabolism by gut microbiota disturbance. Gut Microbes 2023; 15:2267186. [PMID: 37842922 PMCID: PMC10580859 DOI: 10.1080/19490976.2023.2267186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Fine particulate matter (PM2.5) in the atmosphere is easily accompanied by toxic and harmful substances, causing serious harm to human health, including cognitive impairment. Vitamin B12 (VitB12) is an essential micronutrient that is synthesized by bacteria and contributes to neurotransmitter synthesis as a nutrition and signaling molecule. However, the relationship between VitB12 attenuation of cognitive impairment and intestinal microbiota regulation in PM2.5 exposure has not been elucidated. In this study, we demonstrated that PM2.5 caused behavioral defects and neuronal damage in Caenorhabditis elegans (C. elegans), along with significant gene expression changes in neurotransmitter receptors and a decrease in VitB12 content, causing behavioral defects and neuronal damage in C. elegans. Methylcobalamin (MeCbl), a VitB12 analog, alleviated PM2.5-induced neurotoxicity in C. elegans. Moreover, using in vivo and in vitro models, we discovered that long-term exposure to PM2.5 led to changes in the structure of the gut microbiota, resulting in an imbalance of the VitB12-associated metabolic pathway followed by cognitive impairment. MeCbl supplementation could increase the diversity of the bacteria, reduce harmful substance contents, and restore the concentration of short-chain fatty acids (SCFAs) and neurotransmitters to the level of the control group to some degree. Here, a new target to mitigate the harm caused by PM2.5 was discovered, supplying MeCbl for relieving intestinal and intracellular neurotransmitter disorders. Our results also provide a reference for the use of VitB12 to target the adjustment of the human intestinal microbiota to improve metabolic disorders in people exposed to PM2.5.
Collapse
Affiliation(s)
- Xuan Zhu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Food Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Yanting Xia
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Huanhuan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Laboratory animal center, Hangzhou Normal University, Hangzhou, China
| | - Lihua Shi
- Weifang Elbe Health Food Co. Ltd, Weifang, China
| | - Hongping Yin
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Laboratory animal center, Hangzhou Normal University, Hangzhou, China
| | - Meier Gu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Laboratory animal center, Hangzhou Normal University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|