1
|
Wang J, Wang R, Wang M, Ge J, Wang Y, Li Y, Chen C, He J, Zheng B, Xu M, Jiang X, Liu Y, Chen M, Long J. Cutting-Edge Therapy and Immune Escape Mechanisms in EBV-Associated Tumors. Med Res Rev 2025. [PMID: 40077924 DOI: 10.1002/med.22104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, significantly influences the immune microenvironment of associated cancers. EBV-induced expression of viral antigens by tumor cells triggers immune recognition and elicits a pro-inflammatory response. While mild inflammation may help eliminate malignant cells, intense inflammation can accelerate tumor progression. Moreover, EBV can establish lifelong latency in human hosts, characterized by low immunogenicity of its proteins and noncoding RNAs. This enables tumor cells to evade immune detection and impair immune cell function, disrupting immune homeostasis. Consequently, EBV-associated malignancies pose a considerable public health challenge globally, often complicating the prognosis of cancer patients under conventional treatment. With deeper research into the oncogenic expressions and mechanisms of EBV, novel targeted therapies against EBV are gaining prominence. This review discusses recent advancements in understanding how EBV helps tumor cells evade immune surveillance and induce immune dysfunction. It also examines the clinical potential of targeting EBV-associated tumors, providing fresh perspectives on the mechanisms and therapeutic strategies for these cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Yanhan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Changan Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Jiale He
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
2
|
Wittich C, Ettich J, Hertell M, Ghosh Roy B, Xu HC, Floss DM, Lang PA, Scheller J. An engineered palivizumab IgG2 subclass for synthetic gp130 and fas-mediated signaling. J Biol Chem 2025; 301:108205. [PMID: 39828098 PMCID: PMC11872477 DOI: 10.1016/j.jbc.2025.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Recently, we phenocopied interleukin (IL-)6 signaling using the dimerized single-chain variable fragment (scFv) derived from the respiratory syncytial virus IgG1-antibody palivizumab (PscFvLHFc) to activate a palivizumab antiidiotypic nanobody (AIPVHH)-gp130 receptor fusion protein. Palivizumab was unable to activate STAT3 signaling, so we aimed to create a similar ligand capable of triggering this pathway. Here, we created three variants of the ligand called PscFvLH0Fc, PscFvLH4Fc and PscFvLH8Fc by shortening the spacer region connecting PscFvLH and Fc from 23 amino acids in PscFvLHFc to 0 amino acids or expanding it by rigid linkers of four or eight alpha helical loops, respectively. The rigid-linker ligands had completely altered cellular activation patterns via AIPVHHgp130 fusion proteins. Deleting the extracellular stalk region between transmembrane and AIPVHH in the synthetic receptors AIP2VHHgp130Δstalk and AIP3VHHgp130Δstalk to increase rigidity and enhanced the biological activity of the short spacer PscFvFc ligands. Since scFv constructs are less stable than antibodies and have not been Food and Drug Administration approved, we looked for different antibody backbones. Transferring palivizumab's variable region to a more rigid and hence more agonistic IgG2 backbone (PIgG2) maintained affinity while improving agonistic properties activating cells expressing AIP2VHHgp130Δstalk and AIP3VHHgp130Δstalk but not their full-length counterparts. Furthermore, we engineered a tetravalent palivizumab variant (PscFvPIgG2) capable of inducing higher-order receptor clustering, activating Fas-induced apoptosis. In summary, we engineered a fully-synthetic cytokine/cytokine receptor pair based on the IgG2-variant of palivizumab and the AIPVHHgp130Δstalk variants opening avenues for therapeutic applications using nonphysiological targets in immunotherapy.
Collapse
Affiliation(s)
- Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Marcel Hertell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Biswadeep Ghosh Roy
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Haifeng C Xu
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp A Lang
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Weitz HT, Ettich J, Rafii P, Wittich C, Schultz L, Frank NC, Heise D, Krusche M, Lokau J, Garbers C, Behnke K, Floss DM, Kolmar H, Moll JM, Scheller J. Interleukin-11 receptor is an alternative α-receptor for interleukin-6 and the chimeric cytokine IC7. FEBS J 2025; 292:523-536. [PMID: 39473075 PMCID: PMC11796321 DOI: 10.1111/febs.17309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 02/06/2025]
Abstract
The cytokine interleukin 6 (IL-6) signals via the IL-6 α-receptor (IL-6Rα or IL-6R) in complex with the gp130 β-receptor. Cell type restricted expression of the IL-6R limits the action of IL-6 mainly to hepatocytes and some immune cells. Here, we show that IL-6 also binds to the IL-11 α receptor (IL-11Rα or IL-11R) and induces signaling via IL-11R:gp130 complexes, albeit with a lower affinity compared to IL-11. Antagonistic antibodies directed against IL-11R, but not IL-6R, inhibit IL-6 signaling via IL-11R:gp130 receptor complexes. Notably, IL-11 did not cross-react with IL-6R. IL-11R has also been identified as an alternative α receptor for the CNTF/IL-6-derived chimeric cytokine IC7, which has recently been shown to induce weight loss in mice. Accordingly, the effects of therapeutic monoclonal antibodies against IL-6 or IL-6R, which both block IL-6 signaling, may be slightly different. These findings provide new insights into IL-6 signaling and therefore offer new potential therapeutic intervention options in the future.
Collapse
Affiliation(s)
- Hendrik T. Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Laura Schultz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Nils C. Frank
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Denise Heise
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Matthias Krusche
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Juliane Lokau
- Institute of Clinical BiochemistryHannover Medical SchoolGermany
| | | | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Doreen M. Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtGermany
- Centre of Synthetic BiologyTechnical University of DarmstadtGermany
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| |
Collapse
|
4
|
Seibel C, Pudewell S, Rafii P, Ettich J, Weitz HT, Lang A, Petzsch P, Köhrer K, Floss DM, Scheller J. Synthetic trimeric interleukin-6 receptor complexes with a STAT3 phosphorylation dominated activation profile. Cytokine 2024; 184:156766. [PMID: 39348731 DOI: 10.1016/j.cyto.2024.156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
In Interleukin (IL)-6 signalling, IL-6 site I binds to the IL-6 receptor (IL-6R) first, following by IL-6 site II interaction to domain 2/3 of gp130 to form premature trimeric IL-6:IL-6R:gp130 receptor complexes. Formation of the mature hexameric receptor complex is then facilitated by the inter-trimeric interaction of IL-6 site III with domain 1 of the opposing gp130. The two gp130-associated Janus kinases (JAKs) trans-phosphorylate when their spatiotemporal pairing is correct, which causes the activation of STAT, ERK, and AKT pathways in a balanced manner. Since the intracellular domain (ICD) of IL-6R is not needed for STAT/ERK/AKT phosphorylation, we investigated the conditions under which a chimeric IL-6RECD-gp130TMD/ICD receptor protein confers biological activity. For IL-6RECD-gp130TMD/ICD, the extracellular domain (ECD) of IL-6R was fused to the transmembrane domain (TMD) and ICD of gp130. Co-expression of IL-6RECD-gp130TMD/ICD with signalling-deficient gp130 variants did not induce IL-6 signalling, suggesting that the assembly of hexameric complexes failed to dimerize the IL-6R-associated JAKs correctly. By mimicking the premature trimeric receptor complex, IL-6-mediated dimerization of IL-6RECD-gp130TMD/ICD with the single-cytokine-binding variant gp130ΔD1 induced signalling. Of note, IL-6 signalling via these synthetic gp130ΔD1:IL-6RECD-gp130TMD/ICD complexes resulted predominantly in STAT3 phosphorylation. A STAT3-dominated profile was also observed after IL-6-induced signalling mediated by a JAK-deficient IL-6RECD-gp130TMD/ICDΔJAK variant in complex with the JAK-proficient but STAT/ERK/AKT-deficient gp130JAKΔICD variant. Our data showed that effective ERK/AKT signalling could not be executed after intracellular domain swapping from gp130 to the IL-6R. Taken together, the chimeric IL-6R/gp130 receptor may be helpful in the creation of customized synthetic IL-6 signalling.
Collapse
Affiliation(s)
- Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Alexander Lang
- Cardiovascular Research Laboratory, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany.
| |
Collapse
|
5
|
Rafii P, Cruz PR, Ettich J, Seibel C, Padrini G, Wittich C, Lang A, Petzsch P, Köhrer K, Moll JM, Floss DM, Scheller J. Engineered interleukin-6-derived cytokines recruit artificial receptor complexes and disclose CNTF signaling via the OSMR. J Biol Chem 2024; 300:107251. [PMID: 38569939 PMCID: PMC11039321 DOI: 10.1016/j.jbc.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling β-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Rodrigues Cruz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Giacomo Padrini
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Scheller J, Ettich J, Wittich C, Pudewell S, Floss DM, Rafii P. Exploring the landscape of synthetic IL-6-type cytokines. FEBS J 2024; 291:2030-2050. [PMID: 37467060 DOI: 10.1111/febs.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|