1
|
Zhuo Y, Fu S, Qiu Y. Regulation of the immune microenvironment by SUMO in diabetes mellitus. Front Immunol 2025; 16:1506500. [PMID: 40078991 PMCID: PMC11896877 DOI: 10.3389/fimmu.2025.1506500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Post-translational modifications such as SUMOylation are crucial for the functionality and signal transduction of a diverse array of proteins. Analogous to ubiquitination, SUMOylation has garnered significant attention from researchers and has been implicated in the pathogenesis of various human diseases in recent years, such as cancer, neurological lesions, cardiovascular diseases, diabetes mellitus, and so on. The pathogenesis of diabetes, particularly type 1 and type 2 diabetes, has been closely associated with immune dysfunction, which constitutes the primary focus of this review. This review will elucidate the process of SUMOylation and its impact on diabetes mellitus development and associated complications, focusing on its regulatory effects on the immune microenvironment. This article summarizes various signaling pathways at both cellular and molecular levels that are implicated in these processes. Furthermore, it proposes potential new targets for drug development aimed at the prevention and treatment of diabetes mellitus based on insights gained from the SUMOylation process.
Collapse
Affiliation(s)
- Yuting Zhuo
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shangui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Qiu
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
2
|
Long Y, Huang F, Zhang J, Zhang J, Cheng R, Zhu L, Chen Q, Yang D, Pan X, Yang W, Qin M, Huang J. Identification of SUMOylation-related signature genes associated with immune infiltration in ulcerative colitis through bioinformatics analysis and experimental validation. Gene 2025; 935:148996. [PMID: 39395728 DOI: 10.1016/j.gene.2024.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic inflammatory disorder challenging to diagnose clinically. We focused on identifying and validating SUMOylation-related signature genes in UC and their association with immune infiltration. METHODS Five eligible gene expression profiles were selected from the Gene Expression Omnibus (GEO) database and merged into a single dataset comprising 260 UC patients and 76 healthy controls (HC). Differentially expressed genes (DEGs) were identified, and these were intersected with SUMOylation-related genes to obtain differentially expressed SUMOylation-related genes (DESRGs). Next, we identify the signature genes and validate them through comprehensive analyses employing GO, KEGG, GSVA, Lasso-cox regression, ROC curves, and clustering analysis. The infiltrating immune cells were analyzed using the CIBERSORT algorithm and Pearson correlation analysis. Finally, in vitro and in vivo experiments validated the identified signature genes. RESULTS PALMD, THRB, MAGED1, PARP1, and SLC16A1 were identified. Next, an excellent predictive model for UC was established and distinct subgroups of patients associated with SUMOylation were identified. Moreover, the NF-κB signaling pathway likely plays a pivotal role in the regulation of SUMOylation in UC. Additionally, we validated that the alterations in PALMD, THRB, and MAGED1 expression in LPS-induced Caco-2 cells concurred with our bioinformatics findings, particularly demonstrating statistically significant differences in PALMD and THRB expression. Finally, in a DSS-induced mouse colitis model, we observed a significant upregulation of PALMD expression. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation. CONCLUSION This study comprehensively elucidates the biological roles of SUMOylation-related genes in UC, identifying PALMD, MAGED1, THRB, PARP1, and SLC16A1 as signature genes that represent promising biomarkers for UC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ying Long
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China; Department of Gastroenterology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, People's Republic of China
| | - Feihong Huang
- Spine and Osteopathy Ward, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Juan Zhang
- Department of Pediatrics, Zhuzhou Central Hospital, Zhuzhou 412000, People's Republic of China
| | - Jinxiu Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Ruoxi Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Liye Zhu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Qiuling Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Dan Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Xiaoping Pan
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Wenfang Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| | - Jiean Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| |
Collapse
|
3
|
Pereiro P, Tur R, García M, Figueras A, Novoa B. Unravelling turbot ( Scophthalmus maximus) resistance to Aeromonas salmonicida: transcriptomic insights from two full-sibling families with divergent susceptibility. Front Immunol 2024; 15:1522666. [PMID: 39712009 PMCID: PMC11659141 DOI: 10.3389/fimmu.2024.1522666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Furunculosis, caused by the gram-negative bacterium Aeromonas salmonicida subsp. salmonicida, remains a significant threat to turbot (Scophthalmus maximus) aquaculture. Identifying genetic backgrounds with enhanced disease resistance is critical for improving aquaculture health management, reducing antibiotic dependency, and mitigating economic losses. Methods In this study, five full-sibling turbot families were challenged with A. salmonicida, which revealed one family with significantly greater resistance. Transcriptomic analyses (RNA-Seq) were performed on resistant and susceptible families, examining both naïve and 24-h postinfection (hpi) samples from head kidney and liver tissues. Results In the absence of infection, differentially expressed genes (DEGs) were identified predominantly in the liver. Following infection, a marked increase in DEGs was observed in the head kidney, with many genes linked to immune functions. Interestingly, the resistant family displayed a more controlled inflammatory response and upregulation of genes related to antigen presentation and T-cell activity in the head kidney at early infection stages, which may have contributed to its increased survival rate. In the liver, transcriptomic differences between the families were associated mainly with cytoskeletal organization, cell cycle regulation, and metabolic processes, including insulin signalling and lipid metabolism, regardless of infection status. Additionally, many DEGs overlapped with previously identified quantitative trait loci (QTLs) associated with resistance to A. salmonicida, providing further insights into the genetic basis of disease resistance. Discussion This study represents the first RNA-Seq analysis comparing resistant and susceptible turbot families and contributes valuable knowledge for the development of selective breeding programs targeting disease resistance in turbot and other aquaculture species susceptible to A. salmonicida.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Ricardo Tur
- Nueva Pescanova Biomarine Center, S.L., O Grove, Spain
| | - Miguel García
- Nueva Pescanova Biomarine Center, S.L., O Grove, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| |
Collapse
|
4
|
Jia X, Wang J, Ren D, Zhang K, Zhang H, Jin T, Wu S. Impact of the gut microbiota-Th17 cell axis on inflammatory depression. Front Psychiatry 2024; 15:1509191. [PMID: 39655201 PMCID: PMC11625820 DOI: 10.3389/fpsyt.2024.1509191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Depression is a serious cognitive disorder that results in significant and pervasive deficits in social behavior. These deficits can be traced back to the intricate interplay between social, psychological, and biological factors. Inflammatory depression, a treatment-resistant or non-responsive subtype of depression, may be related to the interaction between the gut microbiota and interleukin-17-producing CD4+ T cells (Th17 cells). The heterogeneity, plasticity, and effector role of Th17 cells in depression may be influenced by microbiota factors. Commensals-elicited homeostatic Th17 cells preserve the morphological and functional integrity of the intestinal barrier. In addition to pathogen-elicited inflammatory Th17 cells, commensal-elicited homeostatic Th17 cells can become conditionally pathogenic and contribute to the development of inflammatory depression. This review delves into the possible involvement of Th17 cells in inflammatory depression and examines the interplay between gut microbiota and either homeostatic or inflammatory Th17 cells.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Jiayi Wang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Kaibo Zhang
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Division of Life Sciences and Medicine, Laboratory of Structural Immunology, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Songquan Wu
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| |
Collapse
|
5
|
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. SUMOylation at the crossroads of gut health: insights into physiology and pathology. Cell Commun Signal 2024; 22:404. [PMID: 39160548 PMCID: PMC11331756 DOI: 10.1186/s12964-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.
Collapse
Affiliation(s)
- Xue-Ni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Mu-Yang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Guo-Qing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Li-Na Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - De-Kui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Huang CH, Yang TT, Lin KI. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. J Biomed Sci 2024; 31:16. [PMID: 38280996 PMCID: PMC10821541 DOI: 10.1186/s12929-024-01003-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
SUMOylation, which is a type of post-translational modification that involves covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to target substrates, regulates various important molecular and cellular processes, including transcription, the cell cycle, cell signaling, and DNA synthesis and repair. Newly synthesized SUMO is immature and cleaved by the SUMO-specific protease family, resulting in exposure of the C-terminal Gly-Gly motif to become the mature form. In the presence of ATP, mature SUMO is conjugated with the activating enzyme E1 through the cysteine residue of E1, followed by transfer to the cysteine residue of E2-conjugating enzyme Ubc9 in humans that recognizes and modifies the lysine residue of a substrate protein. E3 SUMO ligases promote SUMOylation. SUMOylation is a reversible modification and mediated by SUMO-specific proteases. Cumulative studies have indicated that SUMOylation affects the functions of protein substrates in various manners, including cellular localization and protein stability. Gene knockout studies in mice have revealed that several SUMO cycling machinery proteins are crucial for the development and differentiation of various cell lineages, including immune cells. Aberrant SUMOylation has been implicated in several types of diseases, including cancers, cardiovascular diseases, and autoimmune diseases. This review summarizes the biochemistry of SUMO modification and the general biological functions of proteins involved in SUMOylation. In particular, this review focuses on the molecular mechanisms by which SUMOylation regulates the development, maturation, and functions of immune cells, including T, B, dendritic, and myeloid cells. This review also discusses the underlying relevance of disruption of SUMO cycling and site-specific interruption of SUMOylation on target proteins in immune cells in diseases, including cancers and infectious diseases.
Collapse
Affiliation(s)
- Chien-Hsin Huang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Tsan-Tzu Yang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|