1
|
Wolf van der Meer J, Larue A, van der Knaap JA, Chalkley GE, Sijm A, Beikmohammadi L, Kozhevnikova EN, van der Vaart A, Tilly BC, Bezstarosti K, Dekkers DHW, Doff WAS, van de Wetering-Tieleman PJ, Lanko K, Barakat TS, Allertz T, van Haren J, Demmers JAA, Atlasi Y, Verrijzer CP. Hao-Fountain syndrome protein USP7 controls neuronal differentiation via BCOR-ncPRC1.1. Genes Dev 2025; 39:401-422. [PMID: 39919828 PMCID: PMC11875088 DOI: 10.1101/gad.352272.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Pathogenic variants in the ubiquitin-specific protease 7 (USP7) gene cause a neurodevelopmental disorder called Hao-Fountain syndrome. However, it remains unclear which of USP7's pleiotropic functions are relevant for neurodevelopment. Here, we present a combination of quantitative proteomics, transcriptomics, and epigenomics to define the USP7 regulatory circuitry during neuronal differentiation. USP7 activity is required for the transcriptional programs that direct both the differentiation of embryonic stem cells into neural stem cells and the neuronal differentiation of SH-SY5Y neuroblastoma cells. USP7 controls the dosage of the Polycomb monubiquitylated histone H2A lysine 119 (H2AK119ub1) ubiquitin ligase complexes ncPRC1.1 and ncPRC1.6. Loss-of-function experiments revealed that BCOR-ncPRC1.1, but not ncPRC1.6, is a key effector of USP7 during neuronal differentiation. Indeed, BCOR-ncPRC1.1 mediates a major portion of USP7-dependent gene regulation during this process. Besides providing a detailed map of the USP7 regulome during neurodifferentiation, our results suggest that USP7- and ncPRC1.1-associated neurodevelopmental disorders involve dysregulation of a shared epigenetic network.
Collapse
Affiliation(s)
- Joyce Wolf van der Meer
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Axelle Larue
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - Jan A van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Gillian E Chalkley
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Ayestha Sijm
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Elena N Kozhevnikova
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Aniek van der Vaart
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Ben C Tilly
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Wouter A S Doff
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - P Jantine van de Wetering-Tieleman
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Tim Allertz
- Department of Cell Biology, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Jeffrey van Haren
- Department of Cell Biology, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands;
- Proteomics Center, Erasmus MC University Medical Center, 3025 GD Rotterdam, The Netherlands
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom;
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3025 GD Rotterdam, The Netherlands;
| |
Collapse
|
2
|
Schurer A, Glushakow-Smith SG, Gritsman K. Targeting chromatin modifying complexes in acute myeloid leukemia. Stem Cells Transl Med 2025; 14:szae089. [PMID: 39607901 PMCID: PMC11878770 DOI: 10.1093/stcltm/szae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Acute myeloid leukemia (AML) is a devastating hematologic malignancy with high rates of relapse, which can, in part, be attributed to the dysregulation of chromatin modifications. These epigenetic modifications can affect the capacity of hematopoietic cells to self-renew or differentiate, which can lead to transformation. Aberrant histone modifications contribute to the derepression of self-renewal genes such as HOXA/B and MEIS1 in committed hematopoietic progenitors, which is considered a key mechanism of leukemogenesis in MLL-rearranged (MLL-r) and NPM1-mutated AML. As regulators of some of the key histone modifications in this disease, the menin-KMT2A and polycomb repressive (PRC1/2) complexes have been identified as promising targets for the treatment of AML. This review explores recent discoveries of how leukemic cells hijack these complexes and their interactions with other chromatin regulators to promote disease progression. We also discuss inhibitors targeting these complexes that have demonstrated therapeutic efficacy in preclinical and clinical studies and propose novel therapeutic combinations targeting the KMT2A and PRC1/2 broader interacting networks to overcome issues of resistance to existing monotherapies.
Collapse
Affiliation(s)
- Alexandra Schurer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Shira G Glushakow-Smith
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- The Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, United States
- Center for Tumor Dormancy, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461,United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
3
|
Benz C, Raas MWD, Tripathi P, Faktorová D, Tromer EC, Akiyoshi B, Lukeš J. On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa. mBio 2024; 15:e0293624. [PMID: 39475241 PMCID: PMC11633173 DOI: 10.1128/mbio.02936-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists. Within the supergroup Discoba, Euglenozoa forms a speciose group of unicellular flagellates-kinetoplastids, euglenids, and diplonemids. Kinetoplastids have an unconventional kinetochore system, while euglenids have subunits that are conserved among most eukaryotes. For diplonemids, a group of extremely diverse and abundant marine flagellates, it remains unclear what kind of kinetochores are present. Here, we employed deep homology detection protocols using profile-versus-profile Hidden Markov Model searches and AlphaFold-based structural comparisons to detect homologies that might have been previously missed. Interestingly, we still could not detect orthologs for most of the kinetoplastid or canonical kinetochore subunits with few exceptions including a putative centromere-specific histone H3 variant (cenH3/CENP-A), the spindle checkpoint protein Mad2, the chromosomal passenger complex members Aurora and INCENP, and broadly conserved proteins like CLK kinase and the meiotic synaptonemal complex proteins SYCP2/3 that also function at kinetoplastid kinetochores. We examined the localization of five candidate kinetochore-associated proteins in the model diplonemid, Paradiplonema papillatum. PpCENP-A shows discrete dots in the nucleus, implying that it is likely a kinetochore component. PpMad2, PpCLKKKT10/19, PpSYCP2L1KKT17/18, and PpINCENP reside in the nucleus, but no clear kinetochore localization was observed. Altogether, these results point to the possibility that diplonemids evolved a hitherto unknown type of kinetochore system. IMPORTANCE A macromolecular assembly called the kinetochore is essential for the segregation of genetic material during eukaryotic cell division. Therefore, characterization of kinetochores across species is essential for understanding the mechanisms involved in this key process across the eukaryotic tree of life. In particular, little is known about kinetochores in divergent protists such as Euglenozoa, a group of unicellular flagellates that includes kinetoplastids, euglenids, and diplonemids, the latter being a highly diverse and abundant component of marine plankton. While kinetoplastids have an unconventional kinetochore system and euglenids have a canonical one similar to traditional model eukaryotes, preliminary searches detected neither unconventional nor canonical kinetochore components in diplonemids. Here, we employed state-of-the-art deep homology detection protocols but still could not detect orthologs for the bulk of kinetoplastid-specific nor canonical kinetochore proteins in diplonemids except for a putative centromere-specific histone H3 variant. Our results suggest that diplonemids evolved kinetochores that do not resemble previously known ones.
Collapse
Affiliation(s)
- Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Maximilian W. D. Raas
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences, Utrecht, the Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Bungo Akiyoshi
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| |
Collapse
|
4
|
Rawal CC, Loubiere V, Butova NL, Gracia J, Parreno V, Merigliano C, Martinez AM, Cavalli G, Chiolo I. Sustained inactivation of the Polycomb PRC1 complex induces DNA repair defects and genomic instability in epigenetic tumors. Histochem Cell Biol 2024; 162:133-147. [PMID: 38888809 PMCID: PMC11227471 DOI: 10.1007/s00418-024-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Cancer initiation and progression are typically associated with the accumulation of driver mutations and genomic instability. However, recent studies demonstrated that cancer can also be driven purely by epigenetic alterations, without driver mutations. Specifically, a 24-h transient downregulation of polyhomeotic (ph-KD), a core component of the Polycomb complex PRC1, is sufficient to induce epigenetically initiated cancers (EICs) in Drosophila, which are proficient in DNA repair and characterized by a stable genome. Whether genomic instability eventually occurs when PRC1 downregulation is performed for extended periods of time remains unclear. Here, we show that prolonged depletion of PH, which mimics cancer initiating events, results in broad dysregulation of DNA replication and repair genes, along with the accumulation of DNA breaks, defective repair, and widespread genomic instability in the cancer tissue. A broad misregulation of H2AK118 ubiquitylation and to a lesser extent of H3K27 trimethylation also occurs and might contribute to these phenotypes. Together, this study supports a model where DNA repair and replication defects accumulate during the tumorigenic transformation epigenetically induced by PRC1 loss, resulting in genomic instability and cancer progression.
Collapse
Affiliation(s)
- Chetan C Rawal
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Vincent Loubiere
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Nadejda L Butova
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Juliette Gracia
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Victoria Parreno
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Chiara Merigliano
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Anne-Marie Martinez
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| | - Irene Chiolo
- Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
6
|
Gahan JM, Helfrich LW, Wetzel LA, Bhanu NV, Yuan ZF, Garcia BA, Klose R, Booth DS. Chromatin profiling identifies putative dual roles for H3K27me3 in regulating transposons and cell type-specific genes in choanoflagellates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596151. [PMID: 38854040 PMCID: PMC11160669 DOI: 10.1101/2024.05.28.596151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Gene expression is tightly controlled during animal development to allow the formation of specialized cell types. Our understanding of how animals evolved this exquisite regulatory control remains elusive, but evidence suggests that changes in chromatin-based mechanisms may have contributed. To investigate this possibility, here we examine chromatin-based gene regulatory features in the closest relatives of animals, choanoflagellates. Using Salpingoeca rosetta as a model system, we examined chromatin accessibility and histone modifications at the genome scale and compared these features to gene expression. We first observed that accessible regions of chromatin are primarily associated with gene promoters and found no evidence of distal gene regulatory elements resembling the enhancers that animals deploy to regulate developmental gene expression. Remarkably, a histone modification deposited by polycomb repressive complex 2, histone H3 lysine 27 trimethylation (H3K27me3), appeared to function similarly in S. rosetta to its role in animals, because this modification decorated genes with cell type-specific expression. Additionally, H3K27me3 marked transposons, retaining what appears to be an ancestral role in regulating these elements. We further uncovered a putative new bivalent chromatin state at cell type-specific genes that consists of H3K27me3 and histone H3 lysine 4 mono-methylation (H3K4me1). Together, our discoveries support the scenario that gene-associated histone modification states that underpin development emerged before the evolution of animal multicellularity.
Collapse
Affiliation(s)
- James M. Gahan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry, University of Oxford, Oxford, UK
- Present Address: Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Lily W. Helfrich
- Howard Hughes Medical Institute / University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
- Present Address: Benchling
| | - Laura A. Wetzel
- Howard Hughes Medical Institute / University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
- Present Address: BioMarin Pharmaceutical Inc
| | - Natarajan V. Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Rob Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David S. Booth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Rawal CC, Loubiere V, Butova NL, Garcia J, Parreno V, Martinez AM, Cavalli G, Chiolo I. Sustained inactivation of the Polycomb PRC1 complex induces DNA repair defects and genomic instability in epigenetic tumors. RESEARCH SQUARE 2024:rs.3.rs-4289524. [PMID: 38746379 PMCID: PMC11092839 DOI: 10.21203/rs.3.rs-4289524/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cancer initiation and progression are typically associated with the accumulation of driver mutations and genomic instability. However, recent studies demonstrated that cancers can also be purely initiated by epigenetic alterations, without driver mutations. Specifically, a 24-hours transient down-regulation of polyhomeotic (ph-KD), a core component of the Polycomb complex PRC1, is sufficient to drive epigenetically initiated cancers (EICs) in Drosophila, which are proficient in DNA repair and are characterized by a stable genome. Whether genomic instability eventually occurs when PRC1 down-regulation is performed for extended periods of time remains unclear. Here we show that prolonged depletion of a PRC1 component, which mimics cancer initiating events, results in broad dysregulation of DNA replication and repair genes, along with the accumulation of DNA breaks, defective repair, and widespread genomic instability in the cancer tissue. A broad mis-regulation of H2AK118 ubiquitylation and to a lesser extent of H3K27 trimethylation also occurs, and might contribute to these phenotypes. Together, this study supports a model where DNA repair and replication defects amplify the tumorigenic transformation epigenetically induced by PRC1 loss, resulting in genomic instability and cancer progression.
Collapse
|
8
|
Li Y, Mo Y, Chen C, He J, Guo Z. Research advances of polycomb group proteins in regulating mammalian development. Front Cell Dev Biol 2024; 12:1383200. [PMID: 38505258 PMCID: PMC10950033 DOI: 10.3389/fcell.2024.1383200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Polycomb group (PcG) proteins are a subset of epigenetic factors that are highly conserved throughout evolution. In mammals, PcG proteins can be classified into two muti-proteins complexes: Polycomb repressive complex 1 (PRC1) and PRC2. Increasing evidence has demonstrated that PcG complexes play critical roles in the regulation of gene expression, genomic imprinting, chromosome X-inactivation, and chromatin structure. Accordingly, the dysfunction of PcG proteins is tightly orchestrated with abnormal developmental processes. Here, we summarized and discussed the current knowledge of the biochemical and molecular functions of PcG complexes, especially the PRC1 and PRC2 in mammalian development including embryonic development and tissue development, which will shed further light on the deep understanding of the basic knowledge of PcGs and their functions for reproductive health and developmental disorders.
Collapse
Affiliation(s)
| | | | | | - Jin He
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiheng Guo
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|