1
|
Tummanapalli S, Gulipalli KC, Bodige S, Pommidi AK, Boya R, Choppadandi S, Bakangari MR, Punna SK, Medaboina S, Mamindla DY, Kanuka A, Endoori S, Ganapathi VK, Kottam SD, Kalbhor D, Valluri M. Cu-Catalyzed Tandem C-N and C-C Bond Formation Leading to 4( 1H)-Quinolones: A Scaffold with Diverse Biological Properties from Totally New Raw Materials in a Single Step. J Org Chem 2024; 89:1609-1617. [PMID: 38238153 DOI: 10.1021/acs.joc.3c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A novel Cu-catalyzed tandem C-N and C-C bond-formation reaction has been developed to furnish 2-substituted-4-(1H)-quinolones. 4-(1H)-quinolones play an important role in medicinal chemistry. Many 2-aryl(alkyl)-4(1H)-quinolones are found to exhibit diverse biological properties. While traditional methods have inherent issues [like starting materials with incompatible functional groups (NH2 and keto groups)], many modern methods either require activated starting materials (like Ynones) or employ expensive metals (Pd, Rh, Au, etc.) involving carbonylation using CO or metal complexes. Our protocol presents an environmentally friendly one-step method for the construction of these useful 2-substituted-4-(1H)-quinolones from easily available aryl boronic acid (or pinacolate ester) and nitriles as new raw materials, using a cheap Cu-catalyst and O2 (air) as a green oxidant. We further extended its application to the synthesis of various natural products, including the first formal total synthesis of punarnavine. A plausible mechanism involving an aryl nitrilium ion (formed due to the intermolecular C-N bond-forming coupling between aryl boron species and the nitrile group) followed by tandem intramolecular C-C bond formation has been proposed.
Collapse
Affiliation(s)
- Satyanarayana Tummanapalli
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Kali Charan Gulipalli
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinu Bodige
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Anil Kumar Pommidi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Ravi Boya
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Suresh Choppadandi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Mahendar Reddy Bakangari
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Shiva Kumar Punna
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinivas Medaboina
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Devender Yadav Mamindla
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Ashok Kanuka
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinivas Endoori
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Vijay Kumar Ganapathi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Sainath Dharmavaram Kottam
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Dinesh Kalbhor
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Muralikrishna Valluri
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| |
Collapse
|
2
|
Watson DJ, Laing L, Petzer JP, Wong HN, Parkinson CJ, Wiesner L, Haynes RK. Efficacies and ADME properties of redox active methylene blue and phenoxazine analogues for use in new antimalarial triple drug combinations with amino-artemisinins. Front Pharmacol 2024; 14:1308400. [PMID: 38259296 PMCID: PMC10800708 DOI: 10.3389/fphar.2023.1308400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Efforts to develop new artemisinin triple combination therapies effective against artemisinin-tolerant strains of Plasmodium falciparum based on rational combinations comprising artemisone or other amino-artemisinins, a redox active drug and a third drug with a different mode of action have now been extended to evaluation of three potential redox partners. These are the diethyl analogue AD01 of methylene blue (MB), the benzo [α]phenoxazine PhX6, and the thiosemicarbazone DpNEt. IC50 values in vitro against CQ-sensitive and resistant P. falciparum strains ranged from 11.9 nM for AD01-41.8 nM for PhX6. PhX6 possessed the most favourable pharmacokinetic (PK) profile: intrinsic clearance rate CLint was 21.47 ± 1.76 mL/min/kg, bioavailability was 60% and half-life was 7.96 h. AD01 presented weaker, but manageable pharmacokinetic properties with a rapid CLint of 74.41 ± 6.68 mL/min/kg leading to a half-life of 2.51 ± 0.07 h and bioavailability of 15%. DpNEt exhibited a half-life of 1.12 h and bioavailability of 8%, data which discourage its further examination, despite a low CLint of 10.20 mL/min/kg and a high Cmax of 6.32 µM. Efficacies of AD01 and PhX6 were enhanced synergistically when each was paired with artemisone against asexual blood stages of P. falciparum NF54 in vitro. The favourable pharmacokinetics of PhX6 indicate this is the best partner among the compounds examined thus far for artemisone. Future work will focus on extending the drug combination studies to artemiside in vitro, and conducting efficacy studies in vivo for artemisone with each of PhX6 and the related benzo[α]phenoxazine SSJ-183.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacobus P. Petzer
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Ho Ning Wong
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, Australia
| | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
3
|
Müller J, Hemphill A. In vitro screening technologies for the discovery and development of novel drugs against Toxoplasma gondii. Expert Opin Drug Discov 2024; 19:97-109. [PMID: 37921660 DOI: 10.1080/17460441.2023.2276349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production and welfare. Since more than 60 years, only a limited panel of drugs has been in use for clinical applications. AREAS COVERED Herein, the authors describe the methodology and the results of library screening approaches to identify inhibitors of Toxoplasma gondii and related strains. The authors then provide the reader with their expert perspectives for the future. EXPERT OPINION Various library screening projects, in particular those using reporter strains, have led to the identification of numerous compounds with good efficacy and specificity in vitro. However, only few compounds are effective in suitable animal models such as rodents. Whereas no novel compound has cleared the hurdle to applications in humans, the few compounds with known indication and application profiles in human patients are of interest for further investigations. Taken together, drug repurposing as well as high-throughput screening of novel compound libraries may shorten the way to novel drugs against toxoplasmosis.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Ramseier J, Imhof D, Hänggeli KPA, Anghel N, Boubaker G, Beteck RM, Ortega-Mora LM, Haynes RK, Hemphill A. In Vitro versus in Mice: Efficacy and Safety of Decoquinate and Quinoline-O-Carbamate Derivatives against Experimental Infection with Neospora caninum Tachyzoites. Pathogens 2023; 12:pathogens12030447. [PMID: 36986369 PMCID: PMC10055983 DOI: 10.3390/pathogens12030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The effects of decoquinate (DCQ) and three O-quinoline-carbamate-derivatives were investigated using human foreskin fibroblasts (HFF) infected with Neospora caninum tachyzoites. These compounds exhibited half-maximal proliferation inhibition (IC50s) from 1.7 (RMB060) to 60 nM (RMB055). Conversely, when applied at 5 (DCQ, RMB054) or 10µM (RMB055, RMB060), HFF viability was not affected. Treatments of infected cell cultures at 0.5µM altered the ultrastructure of the parasite mitochondrion and cytoplasm within 24 h, most pronounced for RMB060, and DCQ, RMB054 and RMB060 did not impair the viability of splenocytes from naïve mice. Long-term treatments of N. caninum-infected HFF monolayers with 0.5µM of each compound showed that only exposure to RMB060 over a period of six consecutive days had a parasiticidal effect, while the other compounds were not able to kill all tachyzoites in vitro. Thus, DCQ and RMB060 were comparatively assessed in the pregnant neosporosis mouse model. The oral application of these compounds suspended in corn oil at 10 mg/kg/day for 5 d resulted in a decreased fertility rate and litter size in the DCQ group, whereas reproductive parameters were not altered by RMB060 treatment. However, both compounds failed to protect mice from cerebral infection and did not prevent vertical transmission/pup mortality. Thus, despite the promising in vitro efficacy and safety characteristics of DCQ and DCQ-derivatives, proof of concept for activity against neosporosis could not be demonstrated in the murine model.
Collapse
Affiliation(s)
- Jessica Ramseier
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Correspondence: (J.R.); (A.H.)
| | - Dennis Imhof
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3013 Bern, Switzerland
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3013 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3013 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Andrew Hemphill
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Correspondence: (J.R.); (A.H.)
| |
Collapse
|
5
|
Dube PS, Legoabe LJ, Beteck RM. Quinolone: a versatile therapeutic compound class. Mol Divers 2022:10.1007/s11030-022-10581-8. [PMID: 36527518 PMCID: PMC9758687 DOI: 10.1007/s11030-022-10581-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2022]
Abstract
The discovery of nalidixic acid is one pinnacle in medicinal chemistry, which opened a new area of research that has led to the discovery of several life-saving antimicrobial agents (generally referred to as fluoroquinolones) for over decades. Although fluoroquinolones are frequently encountered in the literature, the utility of quinolone compounds extends far beyond the applications of fluoroquinolones. Quinolone-based compounds have been reported for activity against malaria, tuberculosis, fungal and helminth infections, etc. Hence, the quinolone scaffold is of great interest to several researchers in diverse disciplines. This article highlights the versatility of the quinolone pharmacophore as a therapeutic agent beyond the fluoroquinolone profile.
Collapse
Affiliation(s)
- Phelelisiwe S. Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| |
Collapse
|
6
|
Alday PH, Nilsen A, Doggett JS. Structure-activity relationships of Toxoplasma gondii cytochrome bc1 inhibitors. Expert Opin Drug Discov 2022; 17:997-1011. [PMID: 35772172 PMCID: PMC9561756 DOI: 10.1080/17460441.2022.2096588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.
Collapse
Affiliation(s)
- Phil Holland Alday
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
7
|
Watson DJ, Laing L, Beteck RM, Gibhard L, Haynes RK, Wiesner L. The evaluation of ADME and pharmacokinetic properties of decoquinate derivatives for the treatment of malaria. Front Pharmacol 2022; 13:957690. [PMID: 36091789 PMCID: PMC9450014 DOI: 10.3389/fphar.2022.957690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
The emergence of Plasmodium falciparum (Pf) parasite strains tolerant of the artemisinin component and resistant to the other drug component in artemisinin combination therapies (ACTs) used for treatment now markedly complicates malaria control. Thus, development of new combination therapies are urgently required. For the non-artemisinin component, the quinolone ester decoquinate (DQ) that possesses potent activities against blood stage Pf and acts on a distinct target, namely the Pf cytochrome bc1 complex, was first considered. However, DQ has poor drug properties including high lipophilicity and exceedingly poor aqueous solubility (0.06 μg/ml), rendering it difficult to administer. Thus, DQ was chemically modified to provide the secondary amide derivative RMB005 and the quinoline O-carbamate derivatives RMB059 and RMB060. The last possesses sub-nanomolar activities against multidrug resistant blood stages of Pf, and P. berghei sporozoite liver stages. Here we present the results of ADME analyses in vitro and pharmacokinetic analyses using C57BL/6 mice. The amide RMB005 had a maximum mean whole blood concentration of 0.49 ± 0.02 µM following oral administration; however, the area under the curve (AUC), elimination half-life (t1/2) and bioavailability (BA) were not significantly better than those of DQ. Surprisingly, the quinoline O-carbamates which can be recrystallized without decomposition were rapidly converted into DQ in human plasma and blood samples. The maximum concentrations of DQ reached after oral administration of RMB059 and RMB060 were 0.23 ± 0.05 and 0.11 ± 0.01 µM, the DQ elimination half-lives were 4.79 ± 1.66 and 4.66 ± 1.16 h, and the DQ clearance were 19.40 ± 3.14 and 21.50 ± 3.38 respectively. Under these assay conditions, the BA of DQ could not be calculated Overall although RMB059 and -060 are labile in physiological medium with respect to the DQ parent, the potential to apply these as prodrugs is apparent from the current data coupled with their ease of preparation.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, School of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Liezl Gibhard
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, School of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- *Correspondence: Lubbe Wiesner,
| |
Collapse
|
8
|
Betts HD, Ong YC, Anghel N, Keller S, Karges J, Voutsara N, Müller J, Manoury E, Blacque O, Cariou K, Hemphill A, Gasser G. Organometallic Derivatives of Decoquinate Targeted toward Toxoplasma gondii. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harley D. Betts
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Yih Ching Ong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Langgass-Strasse 122, CH-3012 Berne, Switzerland
| | - Sarah Keller
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Niovi Voutsara
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Langgass-Strasse 122, CH-3012 Berne, Switzerland
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, 31077 Toulouse, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Langgass-Strasse 122, CH-3012 Berne, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
9
|
Chemical and Pharmacological Properties of Decoquinate: A Review of Its Pharmaceutical Potential and Future Perspectives. Pharmaceutics 2022; 14:pharmaceutics14071383. [PMID: 35890280 PMCID: PMC9315532 DOI: 10.3390/pharmaceutics14071383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Decoquinate (DQ) is an antimicrobial agent commonly used as a feed additive for birds for human consumption. Its use as an additive is well established, but DQ has the potential for therapy as an antimicrobial drug for veterinary treatment and its optimized derivatives and/or formulations, mainly nanoformulations, have antimicrobial activity against pathogens that infect humans. However, DQ has a high partition coefficient and low solubility in aqueous fluids, and these biopharmaceutical properties have limited its use in humans. In this review, we highlight the antimicrobial activity and pharmacokinetic properties of DQ and highlight the solutions currently under investigation to overcome these drawbacks. A literature search was conducted focusing on the use of decoquinate against various infectious diseases in humans and animals. The search was conducted in several databases, including scientific and patent databases. Pharmaceutical nanotechnology and medicinal chemistry are the tools of choice to achieve human applications, and most of these applications have been able to improve the biopharmaceutical properties and pharmacokinetic profile of DQ. Based on the results presented here, DQ prototypes could be tested in clinical trials for human application in the coming years.
Collapse
|
10
|
Angula KT, Legoabe LJ, Jordaan A, Warner DF, Beteck RM. Investigation of quinolone-tethered aminoguanidine as novel antibacterial agents. Arch Pharm (Weinheim) 2022; 355:e2200172. [PMID: 35674486 DOI: 10.1002/ardp.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
A recent study identified quinolone-based thiosemicarbazone with an MIC90 value of 2 µM against Mycobacterium tuberculosis (Mtb). Herein, we report further optimization of the previous hit, which led to the discovery of quinolone-tethered aminoguanidine molecules with generally good antitubercular activity. Compounds 7f and 8e emerged as the hits of the series with submicromolar antitubercular activity, exhibiting MIC90 values of 0.49/0.90 and 0.49/0.60 µM, respectively, in the 7H9 CAS GLU Tx medium. This shows a fivefold increase in antitubercular activity compared to the previous study. Target compounds were also screened against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. However, the series generally exhibited poor antibacterial activities, with only compounds 8d and 8e demonstrating >50% growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa at 32 µg/ml. The compounds displayed selective antitubercular activity as they showed no cytotoxicity effects against two noncancerous human cell lines. In silico studies predict 7f to have good solubility, no inhibitory effect on cytochrome P450 isoenzymes, and to be a non-pan-assay interfering compound.
Collapse
Affiliation(s)
- Klaudia T Angula
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa.,Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa.,Department of Pathology, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa
| | - Richard M Beteck
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets against Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0231521. [PMID: 35352998 PMCID: PMC9045315 DOI: 10.1128/spectrum.02315-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The highly adaptive cellular response of Mycobacterium tuberculosis to various antibiotics and the high costs for clinical trials, hampers the development of novel antimicrobial agents with improved efficacy and safety. Subsequently, in silico drug screening methods are more commonly being used for the discovery and development of drugs, and have been proven useful for predicting the pharmacokinetics, toxicities, and targets, of prospective new antimicrobial agents. In this investigation we used a reversed target fishing approach to determine potential hit targets and their possible interactions between M. tuberculosis and decoquinate RMB041, a propitious new antituberculosis compound. Two of the 13 identified targets, Cyp130 and BlaI, were strongly proposed as optimal drug-targets for dormant M. tuberculosis, of which the first showed the highest comparative binding affinity to decoquinate RMB041. The metabolic pathways associated with the selected target proteins were compared to previously published molecular mechanisms of decoquinate RMB041 against M. tuberculosis, whereby we confirmed disrupted metabolism of proteins, cell wall components, and DNA. We also described the steps within these pathways that are inhibited and elaborated on decoquinate RMB041’s activity against dormant M. tuberculosis. This compound has previously showed promising in vitro safety and good oral bioavailability, which were both supported by this in silico study. The pharmacokinetic properties and toxicity of this compound were predicted and investigated using the online tools pkCSM and SwissADME, and Discovery Studio software, which furthermore supports previous safety and bioavailability characteristics of decoquinate RMB041 for use as an antimycobacterial medication. IMPORTANCE This article elaborates on the mechanism of action of a novel antibiotic compound against both, active and dormant Mycobacterium tuberculosis and describes its pharmacokinetics (including oral bioavailability and toxicity). Information provided in this article serves useful during the search for drugs that shorten the treatment regimen for Tuberculosis and cause minimal adverse effects.
Collapse
|
12
|
Zeng S, Wang H, Tao L, Ning X, Fan Y, Zhao S, Qin L, Chen X. Decoquinate liposomes: highly effective clearance of Plasmodium parasites causing severe malaria. Malar J 2022; 21:24. [PMID: 35073922 PMCID: PMC8785525 DOI: 10.1186/s12936-022-04042-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background Severe malaria caused by Plasmodium falciparum leads to most malaria-related deaths globally. Decoquinate (DQ) displays strong activity against multistage infection by Plasmodium parasites. However, the development of DQ as an oral dosage form for the treatment of malaria at the blood stage has not been successful. In this study, liposome formulations of DQ were created for intravenous (IV) injection to suppress Plasmodium berghei, a parasite that causes severe malaria in mice. Methods DQ liposomes were prepared by conventional ethanol injection method with slight modifications and encapsulation efficiency evaluated by the well-established centrifugation method. Potency of the DQ liposomes against P. falciparum was assessed in vitro using freshly isolated human red blood cells. The efficacy of the DQ liposomes was examined in the mouse model of severe malaria. Results The DQ liposomes were around 150 nm in size and had the encapsulation efficiency rates > 95%. The freshly prepared and lyophilized liposomes were stable after storage at − 20 °C for 6 months. The liposomes were shown to have excellent activity against P. falciparum in vitro with DQ IC50 0.91 ± 0.05 nM for 3D7 (chloroquine sensitive strain) and DQ IC50 1.33 ± 0.14 nM for Dd2 (multidrug resistant strain), which were 18- and 14-fold more potent than artemisinin, respectively. Mice did not have any signs of toxicity after receiving high dose of the liposomes (DQ 500 mg/kg per mouse) by IV injection. In the mouse model of severe malaria, the liposomes had impressive efficacy against P. berghei with DQ ED50 of 0.720 mg/kg. Conclusion The DQ liposomes prepared in this study were stable for long term storage and safe for IV injection in mammalian animals. The newly created liposome formulations had excellent activity against Plasmodium infection at the blood-stage, which encourages their application in the treatment of severe malaria.
Collapse
Affiliation(s)
- Sumei Zeng
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Hongxing Wang
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China. .,CAS Lamvac Biotech Co. Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China.
| | - Long Tao
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Xiaohui Ning
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Yinzhou Fan
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Siting Zhao
- CAS Lamvac Biotech Co. Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Li Qin
- CAS Lamvac Biotech Co. Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Xiaoping Chen
- CAS Lamvac Biotech Co. Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| |
Collapse
|
13
|
The Artemiside-Artemisox-Artemisone-M1 Tetrad: Efficacies against Blood Stage P. falciparum Parasites, DMPK Properties, and the Case for Artemiside. Pharmaceutics 2021; 13:pharmaceutics13122066. [PMID: 34959347 PMCID: PMC8704606 DOI: 10.3390/pharmaceutics13122066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
Because of the need to replace the current clinical artemisinins in artemisinin combination therapies, we are evaluating fitness of amino-artemisinins for this purpose. These include the thiomorpholine derivative artemiside obtained in one scalable synthetic step from dihydroartemisinin (DHA) and the derived sulfone artemisone. We have recently shown that artemiside undergoes facile metabolism via the sulfoxide artemisox into artemisone and thence into the unsaturated metabolite M1; DHA is not a metabolite. Artemisox and M1 are now found to be approximately equipotent with artemiside and artemisone in vitro against asexual P. falciparum (Pf) blood stage parasites (IC50 1.5–2.6 nM). Against Pf NF54 blood stage gametocytes, artemisox is potently active (IC50 18.9 nM early-stage, 2.7 nM late-stage), although against the late-stage gametocytes, activity is expressed, like other amino-artemisinins, at a prolonged incubation time of 72 h. Comparative drug metabolism and pharmacokinetic (DMPK) properties were assessed via po and iv administration of artemiside, artemisox, and artemisone in a murine model. Following oral administration, the composite Cmax value of artemiside plus its metabolites artemisox and artemisone formed in vivo is some 2.6-fold higher than that attained following administration of artemisone alone. Given that efficacy of short half-life rapidly-acting antimalarial drugs such as the artemisinins is associated with Cmax, it is apparent that artemiside will be more active than artemisone in vivo, due to additive effects of the metabolites. As is evident from earlier data, artemiside indeed possesses appreciably greater efficacy in vivo against murine malaria. Overall, the higher exposure levels of active drug following administration of artemiside coupled with its synthetic accessibility indicate it is much the preferred drug for incorporation into rational new artemisinin combination therapies.
Collapse
|
14
|
Tanner L, Mashabela GT, Omollo CC, de Wet TJ, Parkinson CJ, Warner DF, Haynes RK, Wiesner L. Intracellular Accumulation of Novel and Clinically Used TB Drugs Potentiates Intracellular Synergy. Microbiol Spectr 2021; 9:e0043421. [PMID: 34585951 PMCID: PMC8557888 DOI: 10.1128/spectrum.00434-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic repertoire for tuberculosis (TB) remains limited despite the existence of many TB drugs that are highly active in in vitro models and possess clinical utility. Underlying the lack of efficacy in vivo is the inability of TB drugs to penetrate microenvironments inhabited by the causative agent, Mycobacterium tuberculosis, including host alveolar macrophages. Here, we determined the ability of the phenoxazine PhX1 previously shown to be active against M. tuberculosis in vitro to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. We also investigated the extent of permeation into uninfected and M. tuberculosis-infected human macrophage-like Tamm-Horsfall protein 1 (THP-1) cells directly and by comparing to results obtained in vitro in synergy assays. Our data indicate that PhX1 (4,750 ± 127.2 ng/ml) penetrates more effectively into THP-1 cells than do the clinically used anti-TB agents, rifampin (3,050 ± 62.9 ng/ml), moxifloxacin (3,374 ± 48.7 ng/ml), bedaquiline (4,410 ± 190.9 ng/ml), and linezolid (770 ± 14.1 ng/ml). Compound efficacy in infected cells correlated with intracellular accumulation, reinforcing the perceived importance of intracellular penetration as a key drug property. Moreover, we detected synergies deriving from redox-stimulatory combinations of PhX1 or clofazimine with the novel prenylated amino-artemisinin WHN296. Finally, we used compound synergies to elucidate the relationship between compound intracellular accumulation and efficacy, with PhX1/WHN296 synergy levels shown to predict drug efficacy. Collectively, our data support the utility of the applied assays in identifying in vitro active compounds with the potential for clinical development. IMPORTANCE This study addresses the development of novel therapeutic compounds for the eventual treatment of drug-resistant tuberculosis. Tuberculosis continues to progress, with cases of Mycobacterium tuberculosis (M. tuberculosis) resistance to first-line medications increasing. We assess new combinations of drugs with both oxidant and redox properties coupled with a third partner drug, with the focus here being on the potentiation of M. tuberculosis-active combinations of compounds in the intracellular macrophage environment. Thus, we determined the ability of the phenoxazine PhX1, previously shown to be active against M. tuberculosis in vitro, to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. In addition, the extent of permeation into human macrophage-like THP-1 cells and H37Rv-infected THP-1 cells was measured via mass spectrometry and compared to in vitro two-dimensional synergy and subsequent intracellular efficacy. Collectively, our data indicate that development of new drugs will be facilitated using the methods described herein.
Collapse
Affiliation(s)
- Lloyd Tanner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gabriel T. Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Charles C. Omollo
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy J. de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Assessment of the Activity of Decoquinate and Its Quinoline- O-Carbamate Derivatives against Toxoplasma gondii In Vitro and in Pregnant Mice Infected with T. gondii Oocysts. Molecules 2021; 26:molecules26216393. [PMID: 34770802 PMCID: PMC8587999 DOI: 10.3390/molecules26216393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The quinolone decoquinate (DCQ) is widely used in veterinary practice for the treatment of bacterial and parasitic infections, most notably, coccidiosis in poultry and in ruminants. We have investigated the effects of treatment of Toxoplasma gondii in infected human foreskin fibroblasts (HFF) with DCQ. This induced distinct alterations in the parasite mitochondrion within 24 h, which persisted even after long-term (500 nM, 52 days) treatment, although there was no parasiticidal effect. Based on the low half-maximal effective concentration (IC50) of 1.1 nM and the high selectivity index of >5000, the efficacy of oral treatment of pregnant mice experimentally infected with T. gondii oocysts with DCQ at 10 mg/kg/day for 5 days was assessed. However, the treatment had detrimental effects, induced higher neonatal mortality than T. gondii infection alone, and did not prevent vertical transmission. Thus, three quinoline-O-carbamate derivatives of DCQ, anticipated to have better physicochemical properties than DCQ, were assessed in vitro. One such compound, RMB060, displayed an exceedingly low IC50 of 0.07 nM, when applied concomitantly with the infection of host cells and had no impact on HFF viability at 10 µM. As was the case for DCQ, RMB060 treatment resulted in the alteration of the mitochondrial matrix and loss of cristae, but the changes became apparent at just 6 h after the commencement of treatment. After 48 h, RMB060 induced the expression of the bradyzoite antigen BAG1, but TEM did not reveal any other features reminiscent of bradyzoites. The exposure of infected cultures to 300 nM RMB060 for 52 days did not result in the complete killing of all tachyzoites, although mitochondria remained ultrastructurally damaged and there was a slower proliferation rate. The treatment of mice infected with T. gondii oocysts with RMB060 did reduce parasite burden in non-pregnant mice and dams, but vertical transmission to pups could not be prevented.
Collapse
|
16
|
Watson DJ, Laing L, Gibhard L, Wong HN, Haynes RK, Wiesner L. Toward New Transmission-Blocking Combination Therapies: Pharmacokinetics of 10-Amino-Artemisinins and 11-Aza-Artemisinin and Comparison with Dihydroartemisinin and Artemether. Antimicrob Agents Chemother 2021; 65:e0099021. [PMID: 34097488 PMCID: PMC8284440 DOI: 10.1128/aac.00990-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
As artemisinin combination therapies (ACTs) are compromised by resistance, we are evaluating triple combination therapies (TACTs) comprising an amino-artemisinin, a redox drug, and a third drug with a different mode of action. Thus, here we briefly review efficacy data on artemisone, artemiside, other amino-artemisinins, and 11-aza-artemisinin and conduct absorption, distribution, and metabolism and excretion (ADME) profiling in vitro and pharmacokinetic (PK) profiling in vivo via intravenous (i.v.) and oral (p.o.) administration to mice. The sulfamide derivative has a notably long murine microsomal half-life (t1/2 > 150 min), low intrinsic liver clearance and total plasma clearance rates (CLint 189.4, CLtot 32.2 ml/min/kg), and high relative bioavailability (F = 59%). Kinetics are somewhat similar for 11-aza-artemisinin (t1/2 > 150 min, CLint = 576.9, CLtot = 75.0 ml/min/kg), although bioavailability is lower (F = 14%). In contrast, artemether is rapidly metabolized to dihydroartemisinin (DHA) (t1/2 = 17.4 min) and eliminated (CLint = 855.0, CLtot = 119.7 ml/min/kg) and has low oral bioavailability (F) of 2%. While artemisone displays low t1/2 of <10 min and high CLint of 302.1, it displays a low CLtot of 42.3 ml/min/kg and moderate bioavailability (F) of 32%. Its active metabolite M1 displays a much-improved t1/2 of >150 min and a reduced CLint of 37.4 ml/min/kg. Artemiside has t1/2 of 12.4 min, CLint of 673.9, and CLtot of 129.7 ml/kg/min, likely a reflection of its surprisingly rapid metabolism to artemisone, reported here for the first time. DHA is not formed from any amino-artemisinin. Overall, the efficacy and PK data strongly support the development of selected amino-artemisinins as components of new TACTs.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Liezl Gibhard
- H3D, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the Antimycobacterial Mechanism of Action of Decoquinate Derivative RMB041 Using Metabolomics. Antibiotics (Basel) 2021; 10:693. [PMID: 34200519 PMCID: PMC8228794 DOI: 10.3390/antibiotics10060693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), still remains one of the leading causes of death from a single infectious agent worldwide. The high prevalence of this disease is mostly ascribed to the rapid development of drug resistance to the current anti-TB drugs, exacerbated by lack of patient adherence due to drug toxicity. The aforementioned highlights the urgent need for new anti-TB compounds with different antimycobacterial mechanisms of action to those currently being used. An N-alkyl quinolone; decoquinate derivative RMB041, has recently shown promising antimicrobial activity against Mtb, while also exhibiting low cytotoxicity and excellent pharmacokinetic characteristics. Its exact mechanism of action, however, is still unknown. Considering this, we used GCxGC-TOFMS and well described metabolomic approaches to analyze and compare the metabolic alterations of Mtb treated with decoquinate derivative RMB041 by comparison to non-treated Mtb controls. The most significantly altered pathways in Mtb treated with this drug include fatty acid metabolism, amino acid metabolism, glycerol metabolism, and the urea cycle. These changes support previous findings suggesting this drug acts primarily on the cell wall and secondarily on the DNA metabolism of Mtb. Additionally, we identified metabolic changes suggesting inhibition of protein synthesis and a state of dormancy.
Collapse
Affiliation(s)
- Kirsten E. Knoll
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Zander Lindeque
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Adetomiwa A. Adeniji
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Du Toit Loots
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| |
Collapse
|
18
|
Beteck RM, Jordaan A, Seldon R, Laming D, Hoppe HC, Warner DF, Khanye SD. Easy-To-Access Quinolone Derivatives Exhibiting Antibacterial and Anti-Parasitic Activities. Molecules 2021; 26:molecules26041141. [PMID: 33672753 PMCID: PMC7931078 DOI: 10.3390/molecules26041141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24–31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4–20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.
Collapse
Affiliation(s)
- Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa;
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
| | - Heinrich C. Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Setshaba D. Khanye
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| |
Collapse
|
19
|
Tanner L, Haynes RK, Wiesner L. Accumulation of TB-Active Compounds in Murine Organs Relevant to Infection by Mycobacterium tuberculosis. Front Pharmacol 2020; 11:724. [PMID: 32508649 PMCID: PMC7248252 DOI: 10.3389/fphar.2020.00724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), the leading cause of death due to an infectious agent, requires prolonged and costly drug treatments. With the rise in incidence of MDR and XDR TB, newer more efficacious treatments which are better able to permeate into the deeper recesses of the human lung where bacteria reside are urgently required. To this end, two new promising drug candidates, the decoquinate derivative RMB041 and the phenoxazine PhX1, were assessed for their abilities to permeate into specific murine organs. In particular, PhX1 permeation into the lungs and heart was notably efficient, as reflected in the high relative AUC values of 9669 ± 120.2 min/nmol/mg and 12450 ± 45.2 min/nmol/mg for lung and heart tissue, respectively. However, neither compound maintained a free concentration in the lung which exceeded the compound’s respective MIC90 values, indicating the importance of correcting for organ specific binding.
Collapse
Affiliation(s)
- Lloyd Tanner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 2020; 104:5633-5662. [PMID: 32372202 DOI: 10.1007/s00253-020-10606-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.
Collapse
|
21
|
Veale CGL, Müller R. Recent Highlights in Anti-infective Medicinal Chemistry from South Africa. ChemMedChem 2020; 15:809-826. [PMID: 32149446 DOI: 10.1002/cmdc.202000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Global advancements in biological technologies have vastly increased the variety of and accessibility to bioassay platforms, while simultaneously improving our understanding of druggable chemical space. In the South African context, this has resulted in a rapid expansion in the number of medicinal chemistry programmes currently operating, particularly on university campuses. Furthermore, the modern medicinal chemist has the advantage of being able to incorporate data from numerous related disciplines into the medicinal chemistry process, allowing for informed molecular design to play a far greater role than previously possible. Accordingly, this review focusses on recent highlights in drug-discovery programmes, in which South African medicinal chemistry groups have played a substantive role in the design and optimisation of biologically active compounds which contribute to the search for promising agents for infectious disease.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Ronel Müller
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
22
|
Wong HN, Padín-Irizarry V, van der Watt ME, Reader J, Liebenberg W, Wiesner L, Smith P, Eribez K, Winzeler EA, Kyle DE, Birkholtz LM, Coertzen D, Haynes RK. Optimal 10-Aminoartemisinins With Potent Transmission-Blocking Capabilities for New Artemisinin Combination Therapies-Activities Against Blood Stage P. falciparum Including PfKI3 C580Y Mutants and Liver Stage P. berghei Parasites. Front Chem 2020; 7:901. [PMID: 31998692 PMCID: PMC6967409 DOI: 10.3389/fchem.2019.00901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
We have demonstrated previously that amino-artemisinins including artemiside and artemisone in which an amino group replaces the oxygen-bearing substituents attached to C-10 of the current clinical artemisinin derivatives dihydroartemisinin (DHA), artemether and artesunate, display potent activities in vitro against the asexual blood stages of Plasmodium falciparum (Pf). In particular, the compounds are active against late blood stage Pf gametocytes, and are strongly synergistic in combination with the redox active drug methylene blue. In order to fortify the eventual selection of optimum amino-artemisinins for development into new triple combination therapies also active against artemisinin-resistant Pf mutants, we have prepared new amino-artemisinins based on the easily accessible and inexpensive DHA-piperazine. The latter was converted into alkyl- and aryl sulfonamides, ureas and amides. These derivatives were screened together with the comparator drugs DHA and the hitherto most active amino-artemisinins artemiside and artemisone against asexual and sexual blood stages of Pf and liver stage P. berghei (Pb) sporozoites. Several of the new amino-artemisinins bearing aryl-urea and -amide groups are potently active against both asexual, and late blood stage gametocytes (IC50 0.4-1.0 nM). Although the activities are superior to those of artemiside (IC50 1.5 nM) and artemisone (IC50 42.4 nM), the latter are more active against the liver stage Pb sporozoites (IC50 artemisone 28 nM). In addition, early results indicate these compounds tend not to display reduced susceptibility against parasites bearing the Pf Kelch 13 propeller domain C580Y mutation characteristic of artemisinin-resistant Pf. Thus, the advent of the amino-artemisinins including artemiside and artemisone will enable the development of new combination therapies that by virtue of the amino-artemisinin component itself will possess intrinsic transmission-blocking capabilities and may be effective against artemisinin resistant falciparum malaria.
Collapse
Affiliation(s)
- Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Vivian Padín-Irizarry
- Center for Tropical & Emerging Global Diseases, Coverdell Center, University of Georgia, Athens, GA, United States
| | - Mariëtte E van der Watt
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Wilna Liebenberg
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Peter Smith
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Korina Eribez
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elizabeth A Winzeler
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dennis E Kyle
- Center for Tropical & Emerging Global Diseases, Coverdell Center, University of Georgia, Athens, GA, United States
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Dina Coertzen
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
23
|
Campaniço A, Carrasco MP, Njoroge M, Seldon R, Chibale K, Perdigão J, Portugal I, Warner DF, Moreira R, Lopes F. Azaaurones as Potent Antimycobacterial Agents Active against MDR- and XDR-TB. ChemMedChem 2019; 14:1537-1546. [PMID: 31294529 DOI: 10.1002/cmdc.201900289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/19/2019] [Indexed: 12/31/2022]
Abstract
Herein we report the screening of a small library of aurones and their isosteric counterparts, azaaurones and N-acetylazaaurones, against Mycobacterium tuberculosis. Aurones were found to be inactive at 20 μm, whereas azaaurones and N-acetylazaaurones emerged as the most potent compounds, with nine derivatives displaying MIC99 values ranging from 0.4 to 2.0 μm. In addition, several N-acetylazaaurones were found to be active against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical M. tuberculosis isolates. The antimycobacterial mechanism of action of these compounds remains to be determined; however, a preliminary mechanistic study confirmed that they do not inhibit the mycobacterial cytochrome bc1 complex. Additionally, microsomal metabolic stability and metabolite identification studies revealed that N-acetylazaaurones are deacetylated to their azaaurone counterparts. Overall, these results demonstrate that azaaurones and their N-acetyl counterparts represent a new entry in the toolbox of chemotypes capable of inhibiting M. tuberculosis growth.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marta P Carrasco
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Mathew Njoroge
- Division of Clinical Pharmacology, Department of Medicine, Drug Discovery and Development Centre (H3D), University of Cape Town, Observatory, 7925, South Africa
| | - Ronnett Seldon
- Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.,Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - João Perdigão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa.,Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch, 7701, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
24
|
Tanner L, Haynes RK, Wiesner L. An in vitro ADME and in vivo Pharmacokinetic Study of Novel TB-Active Decoquinate Derivatives. Front Pharmacol 2019; 10:120. [PMID: 30833898 PMCID: PMC6387968 DOI: 10.3389/fphar.2019.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/31/2019] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is currently the leading cause of mortality due to an infectious disease, despite the existence of multiple effective first-line and second-line drugs. The current anti-TB regimen requires a prolonged treatment period of around 6 months and is only efficacious against drug-sensitive strains of Mycobacterium tuberculosis (Mtb). With a rise in cases of multi-drug resistant and extensively drug resistant strains of Mtb, newer treatments comprising compounds with novel mechanisms of action are required. Although decoquinate (DQ) is inactive against Mtb, its derivatives are of interest to anti-TB drug discovery because of their potential to permeate the mycobacterial cell wall, Mtb-infected macrophages, and granulomatous lesions by passive diffusion. The compounds also display mechanisms of action which are unlike those of currently used quinolones, potentially displaying activity against new targets. Three such derivatives bearing an alkyl group at N-1 and an amide group at C-3 (RMB 041, -043, and -073) displayed potent in vitro activities against Mtb H37Rv (90% minimum inhibitory concentrations, MIC90 = 1.61, 4.18, and 1.88 μM, respectively) and high selectivity indices (10-25). In this study, we evaluated the drug-like properties (in vitro microsomal stability, microsomal/plasma protein binding, kinetic solubility, lipophilicity, and passive permeability) and pharmacokinetic (PK) parameters of these compounds after intravenous and oral administration to male C57BL/6 mice. The compounds showed markedly improved kinetic solubilities compared to that of the parental DQ and were metabolically stable in vitro. The maximum concentrations reached after oral administration were 5.4 ± 0.40, 5.6 ± 1.40, and 2.0 ± 0.03 μM; elimination half-lives were 23.4 ± 2.50, 6.2 ± 0.80, and 11.6 ± 1.30 h; and bioavailabilities were 21.4 ± 1.0, 22.1 ± 2.2, and 5.9 ± 1.3 for RMB041, -043, and -073, respectively. These compounds therefore display promising drug-like properties, and their PK/toxicity profiles (including long half-lives both in vitro and in vivo) support their potential as candidates for further investigation in animal models of Mtb infection.
Collapse
Affiliation(s)
- Lloyd Tanner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Beteck RM, Seldon R, Jordaan A, Warner DF, Hoppe HC, Laming D, Legoabe LJ, Khanye SD. Quinolone-isoniazid hybrids: synthesis and preliminary in vitro cytotoxicity and anti-tuberculosis evaluation. MEDCHEMCOMM 2019; 10:326-331. [PMID: 30881619 DOI: 10.1039/c8md00480c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide-hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2-8 μM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 μM), 11 (MIC90; 0.2 μM), 12 (MIC90; 0.8 μM) and compound 15 (MIC90; 0.8 μM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions -1 and -3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.
Collapse
Affiliation(s)
- Richard M Beteck
- Faculty of Science , Department of Chemistry , Rhodes University , Grahamstown 6140 , South Africa .
| | - Ronnett Seldon
- Drug Discovery and Development Centre (H3-D) , Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit , Department of Pathology , University of Cape Town , Observatory , 7925 , South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit , Department of Pathology , University of Cape Town , Observatory , 7925 , South Africa.,Institute of Infectious Diseases and Molecular Medicine , University of Cape Town , Observatory , 7952 , South Africa.,Wellcome Centre for Clinical Infectious Diseases Research in Africa , University of Cape Town , Observatory , 7925 , South Africa
| | - Heinrich C Hoppe
- Faculty of Science , Department of Biochemistry and Microbiology , Rhodes University , Grahamstown 6140 , South Africa.,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Science , North-West University , Potchefstroom 2520 , South Africa
| | - Setshaba D Khanye
- Faculty of Science , Department of Chemistry , Rhodes University , Grahamstown 6140 , South Africa . .,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa.,Faculty of Pharmacy , Rhodes University , Grahamstown 6140 , South Africa
| |
Collapse
|