1
|
Jena SS, Garg M, Ghosh S. Evolution of electronic structure and optical properties of naphthalenediimide dithienylvinylene (NDI-TVT) polymer as a function of reduction level: a density functional theory study. Phys Chem Chem Phys 2025; 27:2177-2191. [PMID: 39780765 DOI: 10.1039/d4cp02770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent. To date, a theoretical understanding of how these properties vary with reduction levels for NDI-based polymers is completely missing. Herein, the evolution of the electronic structure and optical properties of the naphthalenediimide dithienylvinylene (NDI-TVT) polymer with varying reduction levels (Cred) is studied using density functional theory and time-dependent density functional theory, respectively, in the gaseous phase and solvent phase. We have envisaged that at lower reduction levels, Cred ≤ 100% (i.e., up to one negative charge per NDI moiety), only radical anions, i.e., polarons, are formed. The bipolarons are observed to be formed only at higher reduction levels, Cred > 100%. We note the coexistence of polarons and bipolarons for the intermediate reduction levels (100% < Cred < 200%). Finally, at 200% reduction levels, the presence of two electrons per NDI unit leads to the completely spin-resolved bipolaronic state formation, where one bipolaron is localized at every NDI unit. This aforementioned evolution of polarons and bipolarons with varying reduction levels is also prominently reflected in the calculated UV-vis-NIR absorption spectra. The detailed theoretical insights gained from the evolution of the (opto)electronic properties of NDI-TVT with reduction levels due to the formation of polaronic/bipolaronic states can guide the systematic design of n-type NDI-TVT-based (opto)electronic devices and in their advancement.
Collapse
Affiliation(s)
- Sushri Soumya Jena
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Mohit Garg
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Sarbani Ghosh
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
2
|
Arambula-Maldonado R, Liu Y, Xing M, Mequanint K. Bioactive and electrically conductive GelMA-BG-MWCNT nanocomposite hydrogel bone biomaterials. BIOMATERIALS ADVANCES 2023; 154:213616. [PMID: 37708668 DOI: 10.1016/j.bioadv.2023.213616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Natural bone is a complex organic-inorganic composite tissue that possesses endogenous electrically conductive properties in response to mechanical forces. Mimicking these unique properties collectively in a single synthetic biomaterial has so far remained a formidable task. In this study, we report a synthesis strategy that comprised gelatin methacryloyl (GelMA), sol-gel derived tertiary bioactive glass (BG), and uniformly dispersed multiwall carbon nanotubes (MWCNTs) to create nanocomposite hydrogels that mimic the organic-inorganic composition of bone. Using this strategy, biomaterials that are electrically conductive and possess electro-mechanical properties similar to endogenous bone were prepared without affecting their biocompatibility. Nanocomposite hydrogel biomaterials were biodegradable and promoted biomineralization, and supported multipotent mesenchymal progenitor cell (10T1/2) cell interactions and differentiation into an osteogenic lineage. To the best of our knowledge, this work presents the first study to functionally characterize suitable electro-mechanical responses in nanocomposite hydrogels, a key process that occurs in the natural bone to drive its repair and regeneration. Overall, the results demonstrated GelMA-BG-MWCNT nanocomposite hydrogels have the potential to become promising bioactive biomaterials for use in bone repair and regeneration.
Collapse
Affiliation(s)
- Rebeca Arambula-Maldonado
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada
| | - Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada.
| |
Collapse
|
3
|
Lu Y, Yang H, Diao Y, Wang H, Izima C, Jones I, Woon R, Chrulski K, D'Arcy JM. Solution-Processable PEDOT Particles for Coatings of Untreated 3D-Printed Thermoplastics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3433-3441. [PMID: 36596273 DOI: 10.1021/acsami.2c18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lack of solution processability is the main bottleneck in research progression and commercialization of conducting polymers. The current strategy of employing a water-soluble dopant (such as PEDOT:PSS) is not feasible with organic solvents, thus limiting compatibility on hydrophobic surfaces, such as three-dimensional (3D) printable thermoplastics. In this article, we utilize a colloidal dispersion of PEDOT particles to overcome this limitation and formulate an organic paint demonstrating conformal coating on 3D-printed objects. We start with synthesizing PEDOT particles that possess a low electrical resistance (gap resistance of 4.2 ± 0.5 Ω/mm). A particle-based organic paint is formulated and applied via brush painting. Coated objects show a surface resistance of 1 kΩ/cm, comparable to an object printed by commercial conductive filaments. The coating enables the fabrication of pH and strain sensors. Highly conductive PEDOT particles also absorb light strongly, especially in the near-infrared (NIR) range due to the high concentration of charge carriers on the polymer's conjugated backbones (i.e., polarons and bipolarons). PEDOT converts light to heat efficiently, resulting in a superior photothermal activity that is demonstrated by the flash ignition of a particle-impregnated cotton ball. Consequently, painted 3D prints are highly effective in converting NIR light to heat, and a 5 s exposure to a NIR laser (808 nm, 0.8 mW/cm2) leads to a record high-temperature increase (194.5 °C) among PEDOT-based coatings.
Collapse
Affiliation(s)
- Yang Lu
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haoru Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yifan Diao
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Hongmin Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Chiemela Izima
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Imani Jones
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Reagan Woon
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kenneth Chrulski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Julio M D'Arcy
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
4
|
Cui H, Huang X. Green and efficient electrosynthesis of poly-3,4-ethylenedioxythiophene in aqueous micellar solution of zwitterionic surfactant. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Abstract
Now in their 5th decade of research and development, conducting polymers represent an interesting class of materials to underpin new wearable or conformable electronic devices. Of particular interest over the years has been poly(3,4-ethylenedioxythiophene), commonly known as PEDOT, owing to its ease of fabrication and relative stability under typical ambient conditions. Understanding PEDOT from a variety of fundamental and applied perspectives is important for how it can be enhanced, modified, functionalised, and/or processed for use in commercial products. This feature article highlights the contribution of the research team at the University of South Australia led by Professor Evans, and their collaborators, putting their work into the broader context of conducting polymer research and application. This review focuses on the vapour synthesis of PEDOT doped with the tosylate anion, the benefits of controlling its morphology/structure during synthesis, and its application as an active material interacting with secondary anions in sensors, energy devices and drug delivery.
Collapse
Affiliation(s)
- Drew R Evans
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
6
|
Chen G, Fu Q, Tan X, Yang H, Luo Y, Shen M, Gu Y. Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118695. [PMID: 34921945 DOI: 10.1016/j.envpol.2021.118695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The negative impact of microplastics (MPs) act as metals vectors to environment and ecosystem have been paid more and more attention, and the accumulation risk of them to human body through the food chains and food webs needs to attract attention. In addition, the MPs bonded with heavy metals transport from river into the sea with high salinity may also have metals release risk. Herein, natural aged microplastics prepared from artificially broken macroplastics adsorbed with heavy metals accumulated from the natural environment were tested for their states and release risk in several simulated solution (NaCl and gastrointestinal solutions) to understand their effects on environment and human health. The adsorption capacity of different heavy metals on MPs was different during natural aging process proved by four-acid digestion method. Metals with high accumulation (including Pb, As, Cr, Mn, Ni, Zn, Co, Cu and Cd) on NAMPs were selected for further study. Results obtained via three-step extraction method showed that these heavy metals were mainly present as acid-extractable and reducible ions, which were characterized by high bioavailability. Release experiments suggested the notable Mn, Zn, As, Cr, Cu and Ni release in NaCl solution, and significant release of Mn, Zn, As, Cr, Cu, Pb and Ni in gastrointestinal solutions. The high metal release ratio in the simulated gastric solution was attributed to the weak binding of metal ions to NAMPs in acidic environment. This study will play a vital rule in assessing the ecological risks associated with MPs in natural environment.
Collapse
Affiliation(s)
- Gaobin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qianmin Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yang Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| |
Collapse
|
7
|
Rudd S, Evans D. Recent advances in the aqueous applications of PEDOT. NANOSCALE ADVANCES 2022; 4:733-741. [PMID: 36131813 PMCID: PMC9419106 DOI: 10.1039/d1na00748c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/30/2021] [Indexed: 06/01/2023]
Abstract
Water is ubiquitous in life - from making up the majority of the Earth's surface (by area) to over half of the human body (by weight). It stands to reason that materials are likely to contact water at some point during their lifetime. In the specific case of sensors however, there is a need to consider materials that display stable function while immersed in aqueous applications. This mini-review will discuss the most recent advances (2018 to 2021) in the application of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) in aqueous environments. At its heart, the use of PEDOT in aqueous applications relies on nanoscale understanding and/or nanoengineered structures and properties. This enables their use in water-based settings such as within the human body or buried in agricultural soils.
Collapse
Affiliation(s)
- Sam Rudd
- Future Industries Institute, University of South Australia Adelaide 5001 South Australia Australia
| | - Drew Evans
- Future Industries Institute, University of South Australia Adelaide 5001 South Australia Australia
| |
Collapse
|
8
|
Driscoll N, Erickson B, Murphy BB, Richardson AG, Robbins G, Apollo NV, Mentzelopoulos G, Mathis T, Hantanasirisakul K, Bagga P, Gullbrand SE, Sergison M, Reddy R, Wolf JA, Chen HI, Lucas TH, Dillingham T, Davis KA, Gogotsi Y, Medaglia JD, Vitale F. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci Transl Med 2021; 13:eabf8629. [PMID: 34550728 PMCID: PMC8722432 DOI: 10.1126/scitranslmed.abf8629] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soft bioelectronic interfaces for mapping and modulating excitable networks at high resolution and at large scale can enable paradigm-shifting diagnostics, monitoring, and treatment strategies. Yet, current technologies largely rely on materials and fabrication schemes that are expensive, do not scale, and critically limit the maximum attainable resolution and coverage. Solution processing is a cost-effective manufacturing alternative, but biocompatible conductive inks matching the performance of conventional metals are lacking. Here, we introduce MXtrodes, a class of soft, high-resolution, large-scale bioelectronic interfaces enabled by Ti3C2 MXene (a two-dimensional transition metal carbide nanomaterial) and scalable solution processing. We show that the electrochemical properties of MXtrodes exceed those of conventional materials and do not require conductive gels when used in epidermal electronics. Furthermore, we validate MXtrodes in applications ranging from mapping large-scale neuromuscular networks in humans to cortical neural recording and microstimulation in swine and rodent models. Last, we demonstrate that MXtrodes are compatible with standard clinical neuroimaging modalities.
Collapse
Affiliation(s)
- Nicolette Driscoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Brian Erickson
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA
| | - Brendan B. Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Andrew G. Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory Robbins
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, PA 19104, USA
| | - Nicholas V. Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Georgios Mentzelopoulos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Tyler Mathis
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Kanit Hantanasirisakul
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Puneet Bagga
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA 19104, USA
- Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sarah E. Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Sergison
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravinder Reddy
- Department of Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John A. Wolf
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H. Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Dillingham
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, PA 19104, USA
| | - Kathryn A. Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yury Gogotsi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
- A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA
| | - John D. Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Drexel University, Philadelphia, PA 19104, USA
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Ferlauto L, Vagni P, Fanelli A, Zollinger EG, Monsorno K, Paolicelli RC, Ghezzi D. All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials 2021; 274:120889. [PMID: 33992836 DOI: 10.1016/j.biomaterials.2021.120889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Transient bioelectronics has grown fast, opening possibilities never thought before. In medicine, transient implantable devices are interesting because they could eliminate the risks related to surgical retrieval and reduce the chronic foreign body reaction. Despite recent progress in this area, the potential of transient bioelectronics is still limited by their short functional lifetime owed to the fast dissolution rate of degradable metals, which is typically a few days or weeks. Here we report that a switch from degradable metals to an entirely polymer-based approach allows for a slower degradation process and a longer lifetime of the transient probe, thus opening new possibilities for transient medical devices. As a proof-of-concept, we fabricated all-polymeric transient neural probes that can monitor brain activity in mice for a few months, rather than a few days or weeks. Also, we extensively evaluated the foreign body reaction around the implant during the probe degradation. This kind of devices might pave the way for several applications in neuroprosthetics.
Collapse
Affiliation(s)
- Laura Ferlauto
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Adele Fanelli
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Rosa Chiara Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland.
| |
Collapse
|
10
|
Sethumadhavan V, Mahjoub R, Zuber K, Stanford N, Evans D. Oxygenation of conducting polymers facilitated by structure‐breaking anions. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Reza Mahjoub
- Future Industries Institute University of South Australia Mawson Lakes South Australia Australia
| | - Kamil Zuber
- Future Industries Institute University of South Australia Mawson Lakes South Australia Australia
| | - Nicole Stanford
- Future Industries Institute University of South Australia Mawson Lakes South Australia Australia
| | - Drew Evans
- Future Industries Institute University of South Australia Mawson Lakes South Australia Australia
| |
Collapse
|
11
|
Dominguez-Alfaro A, Gómez IJ, Alegret N, Mecerreyes D, Prato M. 2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers (Basel) 2021; 13:436. [PMID: 33573011 PMCID: PMC7866415 DOI: 10.3390/polym13030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Carbon nanomaterials (CNMs) and conjugated polymers (CPs) are actively investigated in applications such as optics, catalysis, solar cells, and tissue engineering. Generally, CNMs are implemented in devices where the relationship between the active elements and the micro and nanostructure has a crucial role. However, they present some limitations related to solubility, processibility and release or degradability that affect their manufacturing. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT) or derivatives can hide this limitation by electrodeposition onto an electrode. In this work we have explored two different CNMs immobilization methods in 2D and 3D structures. First, CNM/CP hybrid 2D films with enhanced electrochemical properties have been developed using bis-malonyl PEDOT and fullerene C60. The resulting 2D films nanoparticulate present novel electrochromic properties. Secondly, 3D porous self-standing scaffolds were prepared, containing carbon nanotubes and PEDOT by using the same bis-EDOT co-monomer, which show porosity and topography dependence on the composition. This article shows the validity of electropolymerization to obtain 2D and 3D materials including different carbon nanomaterials and conductive polymers.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- POLYMAT, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - I. Jénnifer Gómez
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Nuria Alegret
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- POLYMAT, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|
12
|
Shahnia S, Ebendorff-Heidepriem H, Evans D, Afshar S. A Fibre-Optic Platform for Sensing Nitrate Using Conducting Polymers. SENSORS (BASEL, SWITZERLAND) 2020; 21:E138. [PMID: 33379268 PMCID: PMC7794756 DOI: 10.3390/s21010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022]
Abstract
Monitoring nitrate ions is essential in agriculture, food industry, health sector and aquatic ecosystem. We show that a conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), can be used for nitrate sensing through a process in which nitrate ion uptake leads to oxidation of PEDOT and change of its optical properties. In this study, a new platform is developed in which a single-mode fibre coated at the tip with PEDOT is used for nitrate sensing. A crucial step towards this goal is introduction of carbonate exposure to chemically reduced PEDOT to a baseline value. The proposed platform exhibits the change in optical behaviour of the PEDOT layer at the tip of the fibre as it undergoes chemical oxidation and reduction (redox). The change in optical properties due to redox switching varies with the intensity of light back reflected by the fibre coated with PEDOT. The proposed platform during oxidation demonstrates linear response for the uptake of nitrate ions in concentrations ranging between 0.2 and 40 parts per million (ppm), with a regression coefficient R2=0.97 and a detection limit of 6.7 ppm. The procedure for redox switching is repeatable as the back reflection light intensity reaches ±1.5% of the initial value after reduction.
Collapse
Affiliation(s)
- Soroush Shahnia
- Laser Physics and Photonic Devices Laboratories, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Heike Ebendorff-Heidepriem
- ARC Centre of Excellence for Nanoscale Biophotonics, Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Drew Evans
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Shahraam Afshar
- Laser Physics and Photonic Devices Laboratories, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|