1
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Tickner BJ, Singh K, Zhivonitko VV, Telkki VV. Ultrafast Nuclear Magnetic Resonance as a Tool to Detect Rapid Chemical Change in Solution. ACS PHYSICAL CHEMISTRY AU 2024; 4:453-463. [PMID: 39346603 PMCID: PMC11428446 DOI: 10.1021/acsphyschemau.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Ultrafast nuclear magnetic resonance (NMR) uses spatial encoding to record an entire two-dimensional data set in just a single scan. The approach can be applied to either Fourier-transform or Laplace-transform NMR. In both cases, acquisition times are significantly shorter than traditional 2D/Laplace NMR experiments, which allows them to be used to monitor rapid chemical transformations. This Perspective outlines the principles of ultrafast NMR and focuses on examples of its use to detect fast molecular conversions in situ with high temporal resolution. We discuss how this valuable tool can be applied in the future to study a much wider variety of novel reactivity.
Collapse
Affiliation(s)
- Ben. J. Tickner
- Department
of Chemistry, University of York, Heslington, York YO10
5NY, United Kingdom
| | - Kawarpal Singh
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EZ, United Kingdom
| | | | - Ville-Veikko Telkki
- NMR
Research Unit, Faculty of Science, University
of Oulu, Oulu 90570, Finland
| |
Collapse
|
3
|
Hamachi T, Yanai N. Recent developments in materials and applications of triplet dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 142-143:55-68. [PMID: 39237253 DOI: 10.1016/j.pnmrs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 09/07/2024]
Abstract
Dynamic nuclear polarization (DNP) is a method for achieving high levels of nuclear spin polarization by transferring spin polarization from electrons to nuclei by microwave irradiation, resulting in higher sensitivity in NMR/MRI. In particular, DNP using photoexcited triplet electron spins (triplet-DNP) can provide a hyperpolarized nuclear spin state at room temperature and in low magnetic field. In this review article, we highlight recent developments in materials and instrumentation for the application of triplet-DNP. First, a brief history and principles of triplet-DNP will be presented. Next, important advances in recent years will be outlined: new materials to hyperpolarize water and biomolecules; high-sensitivity solution NMR by dissolution triplet-DNP; and strategies for further improvement of the polarization. In view of these developments, future directions to widen the range of applications of triplet-DNP will be discussed.
Collapse
Affiliation(s)
- Tomoyuki Hamachi
- Department of Applied Chemistry, Graduate School of Engineering, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
4
|
Zachrdla M, Turhan E, Pötzl C, Sadet A, Vasos PR, Kurzbach D. Hyperpolarized nuclear Overhauser enhancement of alanine methyl groups by doubly relayed proton exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 364:107727. [PMID: 38941676 DOI: 10.1016/j.jmr.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Hyperpolarized water in dissolution dynamic nuclear polarization (dDNP) experiments has emerged as a promising method for enhancing nuclear magnetic resonance (NMR) signals, particularly in studies of proteins and peptides. Herein, we focus on the application of "proton exchange-doubly relayed" nuclear Overhauser effects (NOE) from hyperpolarized water to achieve positive signal enhancement of methyl groups in the side chain of an alanine-glycine peptide. In particular, we show a cascade hyperpolarization transfer. Initial proton exchange between solvent and amide introduces hyperpolarization into the peptide. Subsequently, intermolecular NOE relays the hyperpolarization first to Ala-Hα and then in a second step to the Ala-CH3 moiety. Both NOEs have negative signs. Hence, the twice-relayed NOE pathway leads to a positive signal enhancement of the methyl group with respect to the thermal equilibrium magnetization. This effect might indicate a way towards hyperpolarized water-based signal enhancement for methyl groups, which are often used for NMR studies of large proteins in solution.
Collapse
Affiliation(s)
- Milan Zachrdla
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
| | - Ertan Turhan
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Aude Sadet
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; Biophysics and Biomedical Applications Laboratory and Group, LGED, Extreme Light Infrastructure-Nuclear Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, Reactorului Street, No. 30, 077125 Bucharest-Magurele, Romania
| | - Paul R Vasos
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; Biophysics and Biomedical Applications Laboratory and Group, LGED, Extreme Light Infrastructure-Nuclear Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, Reactorului Street, No. 30, 077125 Bucharest-Magurele, Romania; University of Bucharest, Interdisciplinary School for Doctoral Studies (ISDS), 36-46 Bd Kogalniceanu, RO-050107 Bucharest, Romania
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
5
|
Negroni M, Kurzbach D. Missing Pieces in Structure Puzzles: How Hyperpolarized NMR Spectroscopy Can Complement Structural Biology and Biochemistry. Chembiochem 2023; 24:e202200703. [PMID: 36624049 DOI: 10.1002/cbic.202200703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Structure determination lies at the heart of many biochemical research programs. However, the "giants": X-ray diffraction, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, among others, leave quite a few dark spots on the structural pictures drawn of proteins, nucleic acids, membranes, and other biomacromolecules. For example, structural models under physiological conditions or of short-lived intermediates often remain out of reach of the established experimental methods. This account frames the possibility of including hyperpolarized, that is, dramatically signal-enhanced NMR in existing workflows to fill these spots with detailed depictions. We highlight how integrating methods based on dissolution dynamic nuclear polarization can provide valuable complementary information about formerly inaccessible conformational spaces for many systems. A particular focus will be on hyperpolarized buffers to facilitate the NMR structure determination of challenging systems.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
6
|
Negroni M, Turhan E, Kress T, Ceillier M, Jannin S, Kurzbach D. Frémy's Salt as a Low-Persistence Hyperpolarization Agent: Efficient Dynamic Nuclear Polarization Plus Rapid Radical Scavenging. J Am Chem Soc 2022; 144:20680-20686. [PMID: 36322908 PMCID: PMC9673139 DOI: 10.1021/jacs.2c07960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key technique for molecular structure determination in solution. However, due to its low sensitivity, many efforts have been made to improve signal strengths and reduce the required substrate amounts. In this regard, dissolution dynamic nuclear polarization (DDNP) is a versatile approach as signal enhancements of over 10 000-fold are achievable. Samples are signal-enhanced ex situ by transferring electronic polarization from radicals to nuclear spins before dissolving and shuttling the boosted sample to an NMR spectrometer for detection. However, the applicability of DDNP suffers from one major drawback, namely, paramagnetic relaxation enhancements (PREs) that critically reduce relaxation times due to the codissolved radicals. PREs are the primary source of polarization losses canceling the signal improvements obtained by DNP. We solve this problem by using potassium nitrosodisulfonate (Frémy's salt) as polarization agent (PA), which provides high nuclear spin polarization and allows for rapid scavenging under mild reducing conditions. We demonstrate the potential of Frémy's salt, (i) showing that both 1H and 13C polarization of ∼30% can be achieved and (ii) describing a hybrid sample shuttling system (HySSS) that can be used with any DDNP/NMR combination to remove the PA before NMR detection. This gadget mixes the hyperpolarized solution with a radical scavenger and injects it into an NMR tube, providing, within a few seconds, quantitatively radical-free, highly polarized solutions. The cost efficiency and broad availability of Frémy's salt might facilitate the use of DDNP in many fields of research.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Thomas Kress
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| | - Morgan Ceillier
- Centre
de Résonance Magnétique Nucléaire à Très
Hauts Champs (UMR 5082) Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre
de Résonance Magnétique Nucléaire à Très
Hauts Champs (UMR 5082) Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
7
|
Epasto LM, Honegger P, Che K, Kozak F, Jörg F, Schröder C, Kurzbach D. Nuclear Overhauser spectroscopy in hyperpolarized water - chemical vs. magnetic exchange. Chem Commun (Camb) 2022; 58:11661-11664. [PMID: 36169286 PMCID: PMC9578288 DOI: 10.1039/d2cc03735a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Dissolution dynamic nuclear polarization (dDNP) is a versatile hyperpolarization technique to boost signal intensities in nuclear magnetic resonance (NMR) spectroscopy. The possibility to dissolve biomolecules in a hyperpolarized aqueous buffer under mild conditions has recently widened the scope of NMR by dDNP. The water-to-target hyperpolarization transfer mechanisms remain yet unclear, not least due to an often-encountered dilemma of dDNP experiments: The strongly enhanced signal intensities are accompanied by limited structural information as data acquisition is restricted to short time series of only one-dimensional spectra or a single correlation spectrum. Tackling this challenge, we combine dDNP with molecular dynamics (MD) simulations and predictions of cross-relaxation rates to unravel the spin dynamics of magnetization flow in hyperpolarized solutions.
Collapse
Affiliation(s)
- Ludovica Martina Epasto
- University of Vienna, Faculty of Chemistry, Department of Biological Chemistry, Währingerstr. 38, 1090 Vienna, Austria.
- University of Vienna, Doctoral School in Chemistry (DoSChem), Währingerstr. 42, 1090 Vienna, Austria
| | - Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, 1090 Vienna, Austria
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Kateryna Che
- University of Vienna, Faculty of Chemistry, Department of Biological Chemistry, Währingerstr. 38, 1090 Vienna, Austria.
| | - Fanny Kozak
- University of Vienna, Faculty of Chemistry, Department of Biological Chemistry, Währingerstr. 38, 1090 Vienna, Austria.
- University of Vienna, Doctoral School in Chemistry (DoSChem), Währingerstr. 42, 1090 Vienna, Austria
| | - Florian Jörg
- University of Vienna, Doctoral School in Chemistry (DoSChem), Währingerstr. 42, 1090 Vienna, Austria
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, 1090 Vienna, Austria
| | - Christian Schröder
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, 1090 Vienna, Austria
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Department of Biological Chemistry, Währingerstr. 38, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Matsumoto N, Nishimura K, Kimizuka N, Nishiyama Y, Tateishi K, Uesaka T, Yanai N. Proton Hyperpolarization Relay from Nanocrystals to Liquid Water. J Am Chem Soc 2022; 144:18023-18029. [DOI: 10.1021/jacs.2c07518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naoto Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koki Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Nishiyama
- NanoCrystallography Unit, RIKEN-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- PRESTO and FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Epasto LM, Che K, Kozak F, Selimovic A, Kadeřávek P, Kurzbach D. Toward protein NMR at physiological concentrations by hyperpolarized water-Finding and mapping uncharted conformational spaces. SCIENCE ADVANCES 2022; 8:eabq5179. [PMID: 35930648 PMCID: PMC9355353 DOI: 10.1126/sciadv.abq5179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 05/12/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key method for determining the structural dynamics of proteins in their native solution state. However, the low sensitivity of NMR typically necessitates nonphysiologically high sample concentrations, which often limit the relevance of the recorded data. We show how to use hyperpolarized water by dissolution dynamic nuclear polarization (DDNP) to acquire protein spectra at concentrations of 1 μM within seconds and with a high signal-to-noise ratio. The importance of approaching physiological concentrations is demonstrated for the vital MYC-associated factor X, which we show to switch conformations when diluted. While in vitro conditions lead to a population of the well-documented dimer, concentrations lowered by more than two orders of magnitude entail dimer dissociation and formation of a globularly folded monomer. We identified this structure by integrating DDNP with computational techniques to overcome the often-encountered constraint of DDNP of limited structural information provided by the typically detected one-dimensional spectra.
Collapse
Affiliation(s)
- Ludovica M. Epasto
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Kateryna Che
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Fanny Kozak
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Albina Selimovic
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Pavel Kadeřávek
- Masaryk University, CEITEC, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
10
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|