1
|
McGrath A, Huang H, Brazeau JF, Zhang Z, Audu CO, Vellore NA, Zhu L, Shi Z, Venable JD, Gelin CF, Cernak T. Modulating the Potency of BRD4 PROTACs at the Systems Level with Amine-Acid Coupling Reactions. J Med Chem 2025; 68:405-420. [PMID: 39688565 DOI: 10.1021/acs.jmedchem.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Protein degradation using proteolysis targeting chimeras (PROTACs) represents a promising therapeutic strategy. PROTACs are heterobifunctional molecules that consist of a target-binding moiety and an E3 ligase binding moiety, connected by a linker. These fragments are frequently united via amide bonds. While straightforward to synthesize, amides may impart suboptimal drug properties to the overall molecule. From a systems level perspective, we envisioned that the potency of PROTACs could be modulated through selection of reaction conditions─wherein different catalysts produce distinct linkers from the same two building blocks. We present a suite of BRD4 PROTAC degraders prepared via four new amine-acid coupling reactions alongside the classic amide coupling. Our findings reveal that variations in reaction conditions affect the physicochemical properties of PROTACs, resulting in a spectrum of properties. Notably, several new PROTACs demonstrated enhanced BRD4 degradation efficacy compared to those employing amide linkers, emphasizing the potential of systems chemistry as a therapeutic optimization strategy.
Collapse
Affiliation(s)
- Andrew McGrath
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Haiyan Huang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Jean-Francois Brazeau
- Therapeutics Discovery, Janssen Research & Development, LLC, La Jolla, California 92121, United States
| | - Zirong Zhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Christopher O Audu
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Nadeem A Vellore
- Therapeutics Discovery, Janssen Research & Development, LLC, La Jolla, California 92121, United States
| | - Lu Zhu
- Therapeutics Discovery, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Zhicai Shi
- Therapeutics Discovery, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Jennifer D Venable
- Therapeutics Discovery, Janssen Research & Development, LLC, La Jolla, California 92121, United States
| | - Christine F Gelin
- Therapeutics Discovery, Janssen Research & Development, LLC, La Jolla, California 92121, United States
| | - Tim Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
2
|
Zhang R, Mahjour B, Outlaw A, McGrath A, Hopper T, Kelley B, Walters WP, Cernak T. Exploring the combinatorial explosion of amine-acid reaction space via graph editing. Commun Chem 2024; 7:22. [PMID: 38310120 PMCID: PMC10838272 DOI: 10.1038/s42004-024-01101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
Amines and carboxylic acids are abundant chemical feedstocks that are nearly exclusively united via the amide coupling reaction. The disproportionate use of the amide coupling leaves a large section of unexplored reaction space between amines and acids: two of the most common chemical building blocks. Herein we conduct a thorough exploration of amine-acid reaction space via systematic enumeration of reactions involving a simple amine-carboxylic acid pair. This approach to chemical space exploration investigates the coarse and fine modulation of physicochemical properties and molecular shapes. With the invention of reaction methods becoming increasingly automated and bringing conceptual reactions into reality, our map provides an entirely new axis of chemical space exploration for rational property design.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Babak Mahjour
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Outlaw
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew McGrath
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Tim Cernak
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Patil P, Zheng Q, Kurpiewska K, Dömling A. The isocyanide S N2 reaction. Nat Commun 2023; 14:5807. [PMID: 37726293 PMCID: PMC10509164 DOI: 10.1038/s41467-023-41253-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The SN2 nucleophilic substitution reaction is a vital organic transformation used for drug and natural product synthesis. Nucleophiles like cyanide, oxygen, nitrogen, sulfur, or phosphorous replace halogens or sulfonyl esters, forming new bonds. Isocyanides exhibit unique C-centered lone pair σ and π* orbitals, enabling diverse radical and multicomponent reactions. Despite this, their nucleophilic potential in SN2 reactions remains unexplored. We have uncovered that isocyanides act as versatile nucleophiles in SN2 reactions with alkyl halides. This yields highly substituted secondary amides through in situ nitrilium ion hydrolysis introducing an alternative bond break compared to classical amide synthesis. This novel 3-component process accommodates various isocyanide and electrophile structures, functional groups, scalability, late-stage drug modifications, and complex compound synthesis. This reaction greatly expands chemical diversity, nearly doubling the classical amid coupling's chemical space. Notably, the isocyanide nucleophile presents an unconventional Umpolung amide carbanion synthon (R-NHC(-) = O), an alternative to classical amide couplings.
Collapse
Affiliation(s)
- Pravin Patil
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackӯ University in Olomouc, Olomouc, Czech Republic
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Qiang Zheng
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Katarzyna Kurpiewska
- Department of Crystal Chemistry and Crystal Physics Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Alexander Dömling
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackӯ University in Olomouc, Olomouc, Czech Republic.
- Department of Drug Design, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Mahjour B, Zhang R, Shen Y, McGrath A, Zhao R, Mohamed OG, Lin Y, Zhang Z, Douthwaite JL, Tripathi A, Cernak T. Rapid planning and analysis of high-throughput experiment arrays for reaction discovery. Nat Commun 2023; 14:3924. [PMID: 37400469 DOI: 10.1038/s41467-023-39531-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
High-throughput experimentation (HTE) is an increasingly important tool in reaction discovery. While the hardware for running HTE in the chemical laboratory has evolved significantly in recent years, there remains a need for software solutions to navigate data-rich experiments. Here we have developed phactor™, a software that facilitates the performance and analysis of HTE in a chemical laboratory. phactor™ allows experimentalists to rapidly design arrays of chemical reactions or direct-to-biology experiments in 24, 96, 384, or 1,536 wellplates. Users can access online reagent data, such as a chemical inventory, to virtually populate wells with experiments and produce instructions to perform the reaction array manually, or with the assistance of a liquid handling robot. After completion of the reaction array, analytical results can be uploaded for facile evaluation, and to guide the next series of experiments. All chemical data, metadata, and results are stored in machine-readable formats that are readily translatable to various software. We also demonstrate the use of phactor™ in the discovery of several chemistries, including the identification of a low micromolar inhibitor of the SARS-CoV-2 main protease. Furthermore, phactor™ has been made available for free academic use in 24- and 96-well formats via an online interface.
Collapse
Affiliation(s)
- Babak Mahjour
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rui Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuning Shen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew McGrath
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ruheng Zhao
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Osama G Mohamed
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yingfu Lin
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Zirong Zhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - James L Douthwaite
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ashootosh Tripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tim Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
McGrath A, Zhang R, Shafiq K, Cernak T. Repurposing amine and carboxylic acid building blocks with an automatable esterification reaction. Chem Commun (Camb) 2023; 59:1026-1029. [PMID: 36598511 DOI: 10.1039/d2cc05670d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New methodologies to unite amines and carboxylic acids that complement the popular amide coupling can significantly expand accessible chemical space if they yield products distinct from the classic R-NHC(O)-R' amide arrangement. Here we have developed an amine-acid esterification reaction based on pyridinium salt activation of amine C-N bonds to create products of type R-OC(O)-R' upon reaction with alkyl and aryl carboxylic acids. The protocol is robust and facile as demonstrated by automation on open-source robotics.
Collapse
Affiliation(s)
- Andrew McGrath
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rui Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Khadija Shafiq
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Tim Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|