1
|
Chen S, Zhang Y, Ashuo A, Song S, Yuan L, Wang W, Wang C, Du Z, Wu Y, Tan D, Huang C, Chen J, Li Y, Bai J, Guo H, Huang Z, Guan Y, Xia N, Yuan Z, Zhang J, Yuan Q, Fang Z. Combination of spatial transcriptomics analysis and retrospective study reveals liver infection of SARS-COV-2 is associated with clinical outcomes of COVID-19. EBioMedicine 2025; 111:105517. [PMID: 39709771 PMCID: PMC11732063 DOI: 10.1016/j.ebiom.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Liver involvement is a common complication of coronavirus disease 2019 (COVID-19), especially in hospitalized patients. However, the underlying mechanisms involved are not fully understood. METHODS Immunohistochemistry (IHC) staining of SARS-CoV-2 spike (S) and nucleocapsid (N) proteins was conducted on liver tissues from six patients with COVID-19. The 10x Genomics Visium CytAssist Spatial Gene Assay was designed to analyze liver transcriptomics. TCR CDR3 sequences were analyzed in DNA from liver tissues. Liver function indicators were retrospectively studied in 650 hospitalized patients with COVID-19. FINDINGS SARS-CoV-2 proteins were initially detected in the livers of naturally infected golden (Syrian) hamsters, prompting us to investigate the situation in clinical cases. Thus, we collected liver tissues from patients with abnormal liver biochemical values. Viral S and N proteins were detected in the livers of severe and deceased patients but not in those of moderate patients. We further demonstrated that hepatocytes and erythroid cells in hepatic sinusoids are major cells targeted by SARS-CoV-2. Immune cells, especially T cells, were enriched in surviving severe patients, characterized by enhanced CDR3α clonality and novel CDR3β recombination of the T-cell receptor. In contrast, hepatocyte apoptosis was triggered, and the transcription of albumin (ALB) was obviously impaired in the deceased patients. We then performed a retrospective study including patients with COVID-19. Serum aspartate aminotransferase (AST) and ALB levels at baseline significantly differed in the deceased cohort. However, AST regression did not decrease the risk of death. ALB recovery indicated clinical improvement, and declining or low serum ALB concentrations were associated with death. INTERPRETATION This study provides clinical evidence for liver infection with SARS-CoV-2, insight into the impact of SARS-CoV-2 on the liver, and a potential way to evaluate the risk of death via assessing serum ALB concentration fluctuations in patients with COVID-19. FUNDING National Key R&D Program of China (2021YFC2300602), National Natural Science Foundation of China (92369110), National Natural Science Foundation of China (U23A20474), Shanghai Municipal Science and Technology Major Project (ZD2021CY001), Shanghai Jinshan District Medical and Health Technology Innovation Fund Project (2023-WS-31).
Collapse
Affiliation(s)
- Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Asha Ashuo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu Song
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Weixia Wang
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenlu Huang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jingna Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinjin Bai
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Huilin Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, China; Joint Institute of Virology (Shantou University and University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Zhong Fang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Krasnenkova SF, Zayratyants OV, Midiber KY, Mikhaleva LM. [Liver pathology in COVID-19]. Arkh Patol 2025; 87:53-59. [PMID: 39943730 DOI: 10.17116/patol20258701153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The literature review presents an analysis of the pathogenesis and pathological anatomy of liver damage in COVID-19. Liver damage with the steatosis, vascular disorders, mild portal and lobular inflammatory infiltration, cholestasis and clinically - liver failure is observed in majority of the patients with COVID-19. Chronic liver diseases with infection SARS-CoV-2 tend to decompensate, which significantly worsens the prognosis of the disease. Pathogenesis of liver damage in COVID19 is unclear. There was no convincing evidence for the hypothesis of cytotoxicity for hepatocytes or cholangiocytes by SARS-CoV-2. Similar liver morphological changes described by different authors suggest their nonspecific nature and multifactorial pathogenesis related to hypoxia, cytokin storm, systemic inflammatory response syndrome, sepsis and shock, Covid-associated angio- and coagulopathy, as well as drug-induced hepatotoxicity. Further research is needed to clarify the pathogenesis and pathological anatomy of the liver pathology in COVID-19.
Collapse
Affiliation(s)
- S F Krasnenkova
- Russian University of Medicine, Moscow, Russia
- Research Institute of Organization of Medicine and Medicine Management, Moscow, Russia
| | - O V Zayratyants
- Russian University of Medicine, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - K Yu Midiber
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
- Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
| | - L M Mikhaleva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
3
|
Guarienti FA, Gonçalves JIB, Gonçalves JB, Antônio Costa Xavier F, Marinowic D, Machado DC. COVID-19: a multi-organ perspective. Front Cell Infect Microbiol 2024; 14:1425547. [PMID: 39492990 PMCID: PMC11527788 DOI: 10.3389/fcimb.2024.1425547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/18/2024] [Indexed: 11/05/2024] Open
Abstract
In this mini review, we explore the complex network of inflammatory reactions incited by SARS-CoV-2 infection, which extends its reach well beyond the respiratory domain to influence various organ systems. Synthesizing existing literature, it elucidates how the hyperinflammation observed in COVID-19 patients affects multiple organ systems leading to physiological impairments that can persist over long after the resolution of infection. By exploring the systemic manifestations of this inflammatory cascade, from acute respiratory distress syndrome (ARDS) to renal impairment and neurological sequelae, the review highlights the profound interplay between inflammation and organ dysfunction. By synthesizing recent research and clinical observations, this mini review aims to provide an overview of the systemic interactions and complications associated with COVID-19, underscoring the need for an integrated approach to treatment and management. Understanding these systemic effects is crucial for improving patient outcomes and preparing for future public health challenges.
Collapse
Affiliation(s)
- Fabiana Amaral Guarienti
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Júlia Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniel Marinowic
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denise Cantarelli Machado
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter. Int J Mol Sci 2024; 25:10489. [PMID: 39408818 PMCID: PMC11477656 DOI: 10.3390/ijms251910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19), a disease with very heterogeneous symptoms. Dyslipidaemia is prevalent in at least 20% of Europeans, and dyslipidaemia before SARS-CoV-2 infection increases the risk for severe COVID-19 and mortality by 139%. Many reports described reduced serum cholesterol levels in virus-infected patients, in particular in those with severe disease. The liver is the major organ for lipid homeostasis and hepatic dysfunction appears to occur in one in five patients infected with SARS-CoV-2. Thus, SARS-CoV-2 infection, COVID-19 disease severity and liver injury may be related to impaired cholesterol homeostasis. These observations prompted efforts to assess the therapeutic opportunities of cholesterol-lowering medications to reduce COVID-19 severity. The majority of studies implicate statins to have beneficial effects on disease severity and outcome in COVID-19. Proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies have also shown potential to protect against COVID-19. This review describes the relationship between systemic cholesterol levels, liver injury and COVID-19 disease severity. The potential effects of statins and PCSK9 in COVID-19 are summarised. Finally, the relationship between cholesterol and lung function, the first organ to be affected by SARS-CoV-2, is described.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Peng T, Duong KS, Lu JY, Chacko KR, Henry S, Hou W, Fiori KP, Wang SH, Duong TQ. Incidence, characteristics, and risk factors of new liver disorders 3.5 years post COVID-19 pandemic in the Montefiore Health System in Bronx. PLoS One 2024; 19:e0303151. [PMID: 38870207 PMCID: PMC11175509 DOI: 10.1371/journal.pone.0303151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/20/2024] [Indexed: 06/15/2024] Open
Abstract
PURPOSE To determine the incidence of newly diagnosed liver disorders (LD) up to 3.5-year post-acute COVID-19, and risk factors associated with new LD. METHODS We analyzed 54,699 COVID-19 patients and 1,409,547 non-COVID-19 controls from March-11-2020 to Jan-03-2023. New liver disorders included abnormal liver function tests, advanced liver failure, alcohol and non-alcohol related liver disorders, and cirrhosis. Comparisons were made with ambulatory non-COVID-19 patients and patients hospitalized for other lower respiratory tract infections (LRTI). Demographics, comorbidities, laboratory data, incomes, insurance status, and unmet social needs were tabulated. The primary outcome was new LD at least two weeks following COVID-19 positive test. RESULTS Incidence of new LD was not significantly different between COVID-19 and non-COVID-19 cohorts (incidence:1.99% vs 1.90% p>0.05, OR = 1.04[95%CI: 0.92,1.17], p = 0.53). COVID-19 patients with new LD were older, more likely to be Hispanic and had higher prevalence of diabetes, hypertension, chronic kidney disease, and obesity compared to patients without new LD. Hospitalized COVID-19 patients had no elevated risk of LD compared to hospitalized LRTI patients (2.90% vs 2.07%, p>0.05, OR = 1.29[0.98,1.69], p = 0.06). Among COVID-19 patients, those who developed LD had fewer patients with higher incomes (14.18% vs 18.35%, p<0.05) and more with lower incomes (21.72% vs 17.23%, p<0.01), more Medicare and less Medicaid insurance, and more patients with >3 unmet social needs (6.49% vs 2.98%, p<0.001) and fewer with no unmet social needs (76.19% vs 80.42%, p<0.001). CONCLUSIONS Older age, Hispanic ethnicity, and obesity, but not COVID-19 status, posed increased risk for developing new LD. Lower socioeconomic status was associated with higher incidence of new LD.
Collapse
Affiliation(s)
- Thomas Peng
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Katie S. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Justin Y. Lu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Kristina R. Chacko
- Department of Medicine, Division of Hepatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Wei Hou
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Kevin P. Fiori
- Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Stephen H. Wang
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tim Q. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| |
Collapse
|
6
|
Heinen N, Klöhn M, Westhoven S, Brown RJ, Pfaender S. Host determinants and responses underlying SARS-CoV-2 liver tropism. Curr Opin Microbiol 2024; 79:102455. [PMID: 38522265 DOI: 10.1016/j.mib.2024.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Hepatic sequelae are frequently reported in coronavirus disease 2019 cases and are correlated with increased disease severity. Therefore, a detailed exploration of host factors contributing to hepatic impairment and ultimately infection outcomes in patients is essential for improved clinical management. The causes of hepatic injury are not limited to drug-mediated toxicity or aberrant host inflammatory responses. Indeed, multiple studies report the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in liver autopsies and the susceptibility of explanted human hepatocytes to infection. In this review, we confirm that hepatic cells express an extensive range of factors implicated in SARS-CoV-2 entry. We also provide an overview of studies reporting evidence for direct infection of liver cell types and the infection-induced cell-intrinsic processes that likely contribute to hepatic impairment.
Collapse
Affiliation(s)
- Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Saskia Westhoven
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Richard Jp Brown
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany.
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany; Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany; University of Lübeck, Lübeck, Germany.
| |
Collapse
|
7
|
Tazarghi A, Bazoq S, Taziki Balajelini MH, Ebrahimi M, Hosseini SM, Razavi Nikoo H. Liver injury in COVID-19: an insight into pathobiology and roles of risk factors. Virol J 2024; 21:65. [PMID: 38491495 PMCID: PMC10943793 DOI: 10.1186/s12985-024-02332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
COVID-19 is a complex disease that can lead to fatal respiratory failure with extrapulmonary complications, either as a direct result of viral invasion in multiple organs or secondary to oxygen supply shortage. Liver is susceptible to many viral pathogens, and due to its versatile functions in the body, it is of great interest to determine how hepatocytes may interact with SARS-CoV-2 in COVID-19 patients. Liver injury is a major cause of death, and SARS-CoV-2 is suspected to contribute significantly to hepatopathy. Owing to the lack of knowledge in this field, further research is required to address these ambiguities. Therefore, we aimed to provide a comprehensive insight into host-virus interactions, underlying mechanisms, and associated risk factors by collecting results from epidemiological analyses and relevant laboratory experiments. Backed by an avalanche of recent studies, our findings support that liver injury is a sequela of severe COVID-19, and certain pre-existing liver conditions can also intensify the morbidity of SARS-CoV-2 infection in synergy. Notably, age, sex, lifestyle, dietary habits, coinfection, and particular drug regimens play a decisive role in the final outcome and prognosis as well. Taken together, our goal was to unravel these complexities concerning the development of novel diagnostic, prophylactic, and therapeutic approaches with a focus on prioritizing high-risk groups.
Collapse
Affiliation(s)
- Abbas Tazarghi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sahar Bazoq
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Hosein Taziki Balajelini
- Department of Otorhinolaryngology, Neuroscience Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Mehran Hosseini
- Department of Physiology, School of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
8
|
Michalak A, Lach T, Szczygieł K, Cichoż-Lach H. COVID-19, Possible Hepatic Pathways and Alcohol Abuse-What Do We Know up to 2023? Int J Mol Sci 2024; 25:2212. [PMID: 38396888 PMCID: PMC10888568 DOI: 10.3390/ijms25042212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The pandemic period due to coronavirus disease 2019 (COVID-19) revolutionized all possible areas of global health. Significant consequences were also related to diverse extrapulmonary manifestations of this pathology. The liver was found to be a relatively common organ, beyond the respiratory tract, affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple studies revealed the essential role of chronic liver disease (CLD) in the general outcome of coronavirus infection. Present concerns in this field are related to the direct hepatic consequences caused by COVID-19 and pre-existing liver disorders as risk factors for the severe course of the infection. Which mechanism has a key role in this phenomenon-previously existing hepatic disorder or acute liver failure due to SARS-CoV-2-is still not fully clarified. Alcoholic liver disease (ALD) constitutes another not fully elucidated context of coronavirus infection. Should the toxic effects of ethanol or already developed liver cirrhosis and its consequences be perceived as a causative or triggering factor of hepatic impairment in COVID-19 patients? In the face of these discrepancies, we decided to summarize the role of the liver in the whole picture of coronavirus infection, paying special attention to ALD and focusing on the pathological pathways related to COVID-19, ethanol toxicity and liver cirrhosis.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Karolina Szczygieł
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
9
|
Taylor-Robinson SD, Morgan MY. COVID-19 and the Liver: A Complex and Evolving Picture. Hepat Med 2023; 15:209-220. [PMID: 37965296 PMCID: PMC10641025 DOI: 10.2147/hmer.s384172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023] Open
Abstract
Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily attacks the respiratory system, other organs, such as the liver, are also affected. In this overview, the effects of SARS-CoV-2 infection on the liver in both healthy people and in those with pre-existing liver disease are documented; the relationship between coronavirus disease 19 (COVID-19) vaccination and liver injury is examined; the mechanism of SARS-CoV-2-associated liver injury is explored; and the long-term consequences of COVID-19 are delineated, both in people with and without pre-existing liver disease.
Collapse
Affiliation(s)
- Simon D Taylor-Robinson
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Public Health, Busitema University and Mbale Clinical Research Institute, Mbale, Uganda
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| |
Collapse
|
10
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
11
|
Roshanshad R, Roshanshad A, Fereidooni R, Hosseini-Bensenjan M. COVID-19 and liver injury: Pathophysiology, risk factors, outcome and management in special populations. World J Hepatol 2023; 15:441-459. [PMID: 37206656 PMCID: PMC10190688 DOI: 10.4254/wjh.v15.i4.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 is an ongoing health concern. In addition to affecting the respiratory system, COVID-19 can potentially damage other systems in the body, leading to extra-pulmonary manifestations. Hepatic manifestations are among the common consequences of COVID-19. Although the precise mechanism of liver injury is still questionable, several mechanisms have been hypothesized, including direct viral effect, cytokine storm, hypoxic-ischemic injury, hypoxia-reperfusion injury, ferroptosis, and hepatotoxic medications. Risk factors of COVID-19-induced liver injury include severe COVID-19 infection, male gender, advanced age, obesity, and underlying diseases. The presentations of liver involvement comprise abnormalities in liver enzymes and radiologic findings, which can be utilized to predict the prognosis. Increased gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase levels with hypoalbuminemia can indicate severe liver injury and anticipate the need for intensive care units’ hospitalization. In imaging, a lower liver-to-spleen ratio and liver computed tomography attenuation may indicate a more severe illness. Furthermore, chronic liver disease patients are at a higher risk for severe disease and death from COVID-19. Nonalcoholic fatty liver disease had the highest risk of advanced COVID-19 disease and death, followed by metabolic-associated fatty liver disease and cirrhosis. In addition to COVID-19-induced liver injury, the pandemic has also altered the epidemiology and pattern of some hepatic diseases, such as alcoholic liver disease and hepatitis B. Therefore, it warrants special vigilance and awareness by healthcare professionals to screen and treat COVID-19-associated liver injury accordingly.
Collapse
Affiliation(s)
- Romina Roshanshad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7184731443, Iran
| | | | - Reza Fereidooni
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | |
Collapse
|
12
|
Droc G, Martac C, Buzatu CG, Jipa M, Punga MD, Isac S. Orthotopic Liver Transplantation of a SARS-CoV-2 Negative Recipient from a Positive Donor: The Border between Uncertainty and Necessity in a Pandemic Era- Case Report and Overview of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:836. [PMID: 37241068 PMCID: PMC10224384 DOI: 10.3390/medicina59050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
(1) Introduction: Liver transplantation represents the gold-standard therapy in eligible patients with acute liver failure or end-stage liver disease. The COVID-19 pandemic dramatically affected the transplantation landscape by reducing patients' addressability to specialized healthcare facilities. Since evidence-based acceptance guidelines for non-lung solid organ transplantation from SARS-CoV-2 positive donors are lacking, and the risk of bloodstream-related transmission of the disease is debatable, liver transplantation from SARS-CoV-2 positive donors could be lifesaving, even if long-term interactions are unpredictable. The aim of this case report is to highlight the relevance of performing liver transplantation from SARS-CoV-2 positive donors to negative recipients by emphasizing the perioperative care and short-term outcome. (2) Case presentation: A 20-year-old female patient underwent orthotropic liver transplantation for Child-Pugh C liver cirrhosis secondary to overlap syndrome, from a SARS-CoV-2 positive brain death donor. The patient was not infected nor vaccinated against SARS-CoV-2, and the titer of neutralizing antibodies against the spike protein was negative. The liver transplantation was performed with no significant complications. As immunosuppression therapy, the patient received 20 mg basiliximab (Novartis Farmacéutica S.A., Barcelona, Spain) and 500 mg methylprednisolone (Pfizer Manufacturing Belgium N.V, Puurs, Belgium) intraoperatively. Considering the risk of non-aerogene-related SARS-CoV-2 reactivation syndrome, the patient received remdesivir 200 mg (Gilead Sciences Ireland UC, Carrigtohill County Cork, Ireland) in the neo-hepatic stage, which was continued with 100 mg/day for 5 days. The postoperative immunosuppression therapy consisted of tacrolimus (Astellas Ireland Co., Ltd., Killorglin, County Kerry, Ireland) and mycophenolate mofetil (Roche România S.R.L, Bucharest, Romania) according to the local protocol. Despite the persistent negative PCR results for SARS-CoV-2 in the upper airway tract, the blood titer of neutralizing antibodies turned out positive on postoperative day 7. The patient had a favorable outcome, and she was discharged from the ICU facility seven days later. (3) Conclusions: We illustrated a case of liver transplantation of a SARS-CoV-2 negative recipient, whose donor was SARS-CoV-2 positive, performed in a tertiary, university-affiliated national center of liver surgery, with a good outcome, in order to raise the medical community awareness on the acceptance limits in the case of COVID-19 incompatibility for non-lung solid organs transplantation procedures.
Collapse
Affiliation(s)
- Gabriela Droc
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania; (G.D.); (C.M.); (C.G.B.); (M.J.); (M.D.P.)
- Department of Anesthesiology and Intensive Care I, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Martac
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania; (G.D.); (C.M.); (C.G.B.); (M.J.); (M.D.P.)
| | - Cristina Georgiana Buzatu
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania; (G.D.); (C.M.); (C.G.B.); (M.J.); (M.D.P.)
| | - Miruna Jipa
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania; (G.D.); (C.M.); (C.G.B.); (M.J.); (M.D.P.)
| | - Maria Daniela Punga
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania; (G.D.); (C.M.); (C.G.B.); (M.J.); (M.D.P.)
| | - Sebastian Isac
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania; (G.D.); (C.M.); (C.G.B.); (M.J.); (M.D.P.)
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
13
|
Ekpanyapong S, Reddy KR. Liver and Biliary Tract Disease in Patients with Coronavirus disease-2019 Infection. Gastroenterol Clin North Am 2023; 52:13-36. [PMID: 36813421 PMCID: PMC9531659 DOI: 10.1016/j.gtc.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Coronavirus disease-2019 (COVID-19) had become a global pandemic since March 2020. Although, the most common presentation is of pulmonary involvement, hepatic abnormalities can be encountered in up to 50% of infected individuals, which may be associated with disease severity, and the mechanism of liver injury is thought to be multifactorial. Guidelines for management in patients with chronic liver disease during COVID-19 era are being regularly updated. Patients with chronic liver disease and cirrhosis, including liver transplant candidates and liver transplant recipients are strongly recommended to receive SARS-CoV-2 vaccination because it can reduce rate of COVID-19 infection, COVID-19-related hospitalization, and mortality.
Collapse
Affiliation(s)
- Sirina Ekpanyapong
- Division of Gastroenterology and Hepatology, Department of Medicine, Huachiew General Hospital, 665 Bumroongmueang Road, Khlong Mahanak, Bangkok 10100, Thailand; Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 2 Dulles, Liver Transplant Office, HUP3400 Spruce Street, Philadelphia, PA 19104, USA
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 2 Dulles, Liver Transplant Office, HUP3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Mann JP, Lenz D, Stamataki Z, Kelly D. Common mechanisms in pediatric acute liver failure. Trends Mol Med 2023; 29:228-240. [PMID: 36496278 DOI: 10.1016/j.molmed.2022.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Acute liver failure (ALF) is a rare but potentially fatal disease in children. The etiology is multifactorial, including infection, autoimmune, and genetic disorders, as well as indeterminate hepatitis, which has a higher requirement for liver transplantation. Activation of the innate and adaptive immune systems leads to hepatocyte-specific injury which is mitigated by T regulatory cell activation. Recovery of the native liver depends on activation of apoptotic and regenerative pathways, including the integrated stress response (ISR; e.g., PERK), p53, and HNF4α. Loss-of-function mutations in these pathways cause recurrent ALF in response to non-hepatotropic viruses. Deeper understanding of these mechanisms will lead to improved diagnosis, management, and outcomes for pediatric ALF.
Collapse
Affiliation(s)
- Jake P Mann
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK; Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
15
|
Cumhur Cure M, Cure E. Severe acute respiratory syndrome coronavirus 2 may cause liver injury via Na +/H + exchanger. World J Virol 2023; 12:12-21. [PMID: 36743661 PMCID: PMC9896593 DOI: 10.5501/wjv.v12.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023] Open
Abstract
The liver has many significant functions, such as detoxification, the urea cycle, gluconeogenesis, and protein synthesis. Systemic diseases, hypoxia, infections, drugs, and toxins can easily affect the liver, which is extremely sensitive to injury. Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage. The primary regulator of intracellular pH in the liver is the Na+/H+ exchanger (NHE). Physiologically, NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline. Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensin-converting enzyme 2. In severe cases of coronavirus disease 2019, high angi-otensin II levels may cause NHE overstimulation and lipid accumulation in the liver. NHE overstimulation can lead to hepatocyte death. NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver. Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation, the virus may indirectly cause an increase in fibrinogen and D-dimer levels. NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release. Also, NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver. Increasing NHE3 activity leads to Na+ loading, which impairs the containment and fluidity of bile acid. NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid, thus triggering systemic damage. Unlike other tissues, tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine. Thus, increased luminal Na+ leads to diarrhea and cytokine release. Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- Department of Biochemistry, Private Tanfer Hospital, Istanbul 34394, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul 34200, Turkey
| |
Collapse
|
16
|
Baldelli L, Marjot T, Barnes E, Barritt AS, Webb GJ, Moon AM. SARS-CoV-2 Infection and Liver Disease: A Review of Pathogenesis and Outcomes. Gut Liver 2023; 17:12-23. [PMID: 36457261 PMCID: PMC9840920 DOI: 10.5009/gnl220327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
The impact of the coronavirus disease 2019 (COVID-19) pandemic has been immense, and it continues to have lasting repercussions. While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus primarily infects the respiratory system, other organ systems are affected, including the liver. Scientific knowledge on the role of SARS-CoV-2 infection and liver injury has evolved rapidly, with recent data suggesting specific hepatotropism of SARS-CoV-2. Moreover, additional concerns have been raised in regard to long-term liver damage, related to emerging cases of post-COVID-19 cholangiopathy and chronic cholestasis. Great effort has also been focused on studying how specific subpopulations with chronic medical conditions might be disproportionately impacted by COVID-19. One such population includes individuals with chronic liver disease (CLD) and cirrhosis, with an expanding body of research indicating these patients being particularly susceptible to adverse outcomes. In this review, we provide an updated summary on the current pathogenesis and mechanism of liver injury in the setting of SARS-CoV-2 infection, the association between health outcomes and SARS-CoV-2 infection in patients with CLD, and the unique consequences of the COVID-19 pandemic on the routine care of patients with CLD.
Collapse
Affiliation(s)
- Luke Baldelli
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - A. Sidney Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Gwilym J. Webb
- Cambridge Liver Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Andrew M. Moon
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Zanon M, Neri M, Pizzolitto S, Radaelli D, Concato M, Peruch M, D'Errico S. Liver pathology in COVID-19 related death and leading role of autopsy in the pandemic. World J Gastroenterol 2023; 29:200-220. [PMID: 36683722 PMCID: PMC9850946 DOI: 10.3748/wjg.v29.i1.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Information on liver involvement in patients with coronavirus disease 2019 is currently fragmented. AIM To highlight the pathological changes found during the autopsy of severe acute respiratory syndrome coronavirus 2 positive patients. METHODS A systematic literature search on PubMed was carried out until June 21, 2022. RESULTS A literature review reveals that pre-existing liver disease and elevation of liver enzyme in these patients are not common; liver enzyme elevations tend to be seen in those in critical conditions. Despite the poor expression of viral receptors in the liver, it seems that the virus is able to infect this organ and therefore cause liver damage. Unfortunately, to date, the search for the virus inside the liver is not frequent (16% of the cases) and only a small number show the presence of the virus. In most of the autopsy cases, macroscopic assessment is lacking, while microscopic evaluation of livers has revealed the frequent presence of congestion (42.7%) and steatosis (41.6%). Less frequent is the finding of hepatic inflammation or necrosis (19%) and portal inflammation (18%). The presence of microthrombi, frequently found in the lungs, is infrequent in the liver, with only 12% of cases presenting thrombotic formations within the vascular tree. CONCLUSION To date, the greatest problem in interpreting these modifications remains the association of the damage with the direct action of the virus, rather than with the inflammation or alterations induced by hypoxia and hypovolemia in patients undergoing oxygen therapy and decompensated patients.
Collapse
Affiliation(s)
- Martina Zanon
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Margherita Neri
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Stefano Pizzolitto
- Department of Pathology, Santa Maria della Misericordia University Hospital, Udine 33100, Italy
| | - Davide Radaelli
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Monica Concato
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Michela Peruch
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Stefano D'Errico
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste 34149, Italy
| |
Collapse
|
18
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
19
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|