1
|
Ren H, Shen X. Multi-omics reveals the hepatic metabolic mechanism of neurological symptoms caused by selenium exposure in Przewalski's gazelle (Procapra przewalskii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126341. [PMID: 40316242 DOI: 10.1016/j.envpol.2025.126341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neurological symptoms resulting from selenium(Se) exposure significantly impact the health and conservation of Przewalski's gazelle. In this study, we performed proteomic and metabolomic analyses of the liver in Przewalski's gazelle for the first time, aiming to reveal the hepatic metabolic mechanisms underlying the neurological symptoms caused by Se exposure. We identified 89 differentially expressed proteins and 30 metabolites with altered regulation. Using multi-omics integrated analysis, we identified a neurofunctional regulation network composed of three metabolic pathways, with (S)-3-amino-2-methylpropionate transaminase being the key enzyme in the regulatory network. Molecular docking revealed that the binding of selenocysteine to (S)-3-amino-2-methylpropionate transaminase may act as a key factor in activating this regulatory network. Consequently, these findings provide important insights into the molecular mechanisms of neurological symptoms caused by Se exposure and have significant implications for the conservation in Przewalski's gazelle.
Collapse
Affiliation(s)
- Hong Ren
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621010, China; North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaoyun Shen
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621010, China; Rural Revitalization Project Center, Guizhou Department of Agriculture and Rural Affairs, Guiyang, 550000, China.
| |
Collapse
|
2
|
Kaur A, Goel RK. Modelling Epilepsy Associated Alzheimer's Disease Through Mitochondrial Complex-I Inhibition: Neurochemical and Therapeutic Perspectives. Neurochem Res 2025; 50:163. [PMID: 40366471 DOI: 10.1007/s11064-025-04413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Alzheimer's disease (AD) is comorbid condition in epilepsy. Mitochondrial dysfunction serves as a common disease mechanism. This study aimed to develop a new mouse of epilepsy-associated AD by inhibiting mitochondrial complex-I and exploring neurochemistry to identify therapeutic targets. Swiss albino mice were divided into naïve, corneal kindled (CK), and rotenone corneal kindled (RCK) groups. CK underwent epileptogenesis by using 6 Hz corneal kindling model (15 mA, 20 V, 6-Hz, 3 s for 15 days), while RCK underwent both epileptogenesis and mitochondrial dysfunction via rotenone administration (2.5 mg/kg, i.p daily). RCK mice exhibited generalised tonic-clonic seizures, cognitive deficits, oxidative stress, and Aβ/tau deposition. Neurochemical analysis showed increased glutamate, kynurenine, and reduced GABA, taurine, monoamines, antioxidants, and acetylcholinesterase activity. The RCK model replicates construct and face validity of both epilepsy and AD, may serve as a new model to investigate shared disease mechanisms and associated altered neurotransmitter as therapeutic approach.
Collapse
Affiliation(s)
- Arvinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 140401, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 140401, India.
| |
Collapse
|
3
|
Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647282. [PMID: 40235982 PMCID: PMC11996495 DOI: 10.1101/2025.04.04.647282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neurons rely on tightly regulated metabolic networks to sustain their high-energy demands, particularly through the coupling of glycolysis and oxidative phosphorylation. Here, we investigate the role of pyruvate kinase (PyK), a key glycolytic enzyme, in maintaining axonal and synaptic integrity in the Drosophila melanogaster neuromuscular system. Using genetic deficiencies in PyK, we show that disrupting glycolysis induces progressive synaptic and axonal degeneration and severe locomotor deficits. These effects require the conserved dual leucine zipper kinase (DLK), Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) Fos transcription factor axonal damage signaling pathway and the SARM1 NADase enzyme, a key driver of axonal degeneration. As both DLK and SARM1 regulate degeneration of injured axons (Wallerian degeneration), we probed the effect of PyK loss on this process. Consistent with the idea that metabolic shifts may influence neuronal resilience in context-dependent ways, we find that pyk knockdown delays Wallerian degeneration following nerve injury, suggesting that reducing glycolytic flux can promote axon survival under stress conditions. This protective effect is partially blocked by DLK knockdown and fully abolished by SARM1 overexpression. Together, our findings help bridge metabolism and neurodegenerative signaling by demonstrating that glycolytic perturbations causally activate stress response pathways that dictate the balance between protection and degeneration depending on the system's state. These results provide a mechanistic framework for understanding metabolic contributions to neurodegeneration and highlight the potential of metabolism as a target for therapeutic strategies. Abstract Figure
Collapse
|
4
|
Rabah Y, Berwick JP, Sagar N, Pasquer L, Plaçais PY, Preat T. Astrocyte-to-neuron H 2O 2 signalling supports long-term memory formation in Drosophila and is impaired in an Alzheimer's disease model. Nat Metab 2025; 7:321-335. [PMID: 39856222 PMCID: PMC11860231 DOI: 10.1038/s42255-024-01189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/21/2024] [Indexed: 01/27/2025]
Abstract
Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron H2O2 signalling cascade in Drosophila that is essential for long-term memory formation. Stimulation of astrocytes by acetylcholine induces an increase in intracellular calcium ions, which triggers the generation of extracellular superoxide (O2•-) by astrocytic NADPH oxidase. Astrocyte-secreted superoxide dismutase 3 (Sod3) converts O2•- to hydrogen peroxide (H2O2), which is imported into neurons of the olfactory memory centre, the mushroom body, as revealed by in vivo H2O2 imaging. Notably, Sod3 activity requires copper ions, which are supplied by neuronal amyloid precursor protein. We also find that human amyloid-β peptide, implicated in Alzheimer's disease, inhibits the nAChRα7 astrocytic cholinergic receptor and impairs memory formation by preventing H2O2 synthesis. These findings may have important implications for understanding the aetiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Yasmine Rabah
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Jean-Paul Berwick
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Nisrine Sagar
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Pasquer
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Shoenhard H, Sehgal A. Coordinating the energetic strategy of glia and neurons for memory. Trends Neurosci 2025; 48:93-95. [PMID: 39848837 PMCID: PMC11827068 DOI: 10.1016/j.tins.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Memory consolidation requires rapid energy supply to neurons. In a recent study, Francés et al. revealed the signal by which a neuron commands glia to limit fatty acid synthesis in favor of metabolite export during memory formation in Drosophila melanogaster. This mechanism coordinates just-in-time glial energy delivery in response to dynamic neuronal needs.
Collapse
Affiliation(s)
- Hannah Shoenhard
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA 19010, USA; Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Raun N, Jones SG, Kerr O, Keung C, Butler EF, Alka K, Krupski JD, Reid-Taylor RA, Ibrahim V, Williams M, Top D, Kramer JM. Trithorax regulates long-term memory in Drosophila through epigenetic maintenance of mushroom body metabolic state and translation capacity. PLoS Biol 2025; 23:e3003004. [PMID: 39869640 PMCID: PMC11835295 DOI: 10.1371/journal.pbio.3003004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/18/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh). Through these key targets, Trx facilitates a metabolic state characterized by high lactate levels in MBγ neurons. This metabolic state supports a high capacity for protein translation, a process that is essential for LTM, but not STM. These data suggest that Trx, a classic regulator of cell type specification during development, has additional functions in maintaining underappreciated aspects of postmitotic neuron identity, such as metabolic state. Our work supports a body of evidence suggesting that a high capacity for energy metabolism is an essential cell identity characteristic for neurons that mediate LTM.
Collapse
Affiliation(s)
- Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Spencer G. Jones
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Olivia Kerr
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Crystal Keung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Emily F. Butler
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Kumari Alka
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jonathan D. Krupski
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Robert A. Reid-Taylor
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Veyan Ibrahim
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - MacKayla Williams
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Deniz Top
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Jamie M. Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| |
Collapse
|
7
|
Francés R, Rabah Y, Preat T, Plaçais PY. Diverting glial glycolytic flux towards neurons is a memory-relevant role of Drosophila CRH-like signalling. Nat Commun 2024; 15:10467. [PMID: 39622834 PMCID: PMC11612226 DOI: 10.1038/s41467-024-54778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
An essential role of glial cells is to comply with the large and fluctuating energy needs of neurons. Metabolic adaptation is integral to the acute stress response, suggesting that glial cells could be major, yet overlooked, targets of stress hormones. Here we show that Dh44 neuropeptide, Drosophila homologue of mammalian corticotropin-releasing hormone (CRH), acts as an experience-dependent metabolic switch for glycolytic output in glia. Dh44 released by dopamine neurons limits glial fatty acid synthesis and build-up of lipid stores. Although basally active, this hormonal axis is acutely stimulated following learning of a danger-predictive cue. This results in transient suppression of glial anabolic use of pyruvate, sparing it for memory-relevant energy supply to neurons. Diverting pyruvate destination may dampen the need to upregulate glial glycolysis in response to increased neuronal demand. Although beneficial for the energy efficiency of memory formation, this mechanism reveals an ongoing competition between neuronal fuelling and glial anabolism.
Collapse
Affiliation(s)
- Raquel Francés
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Yasmine Rabah
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
8
|
Zhang Y, Wang Z, Xu F, Liu Z, Zhao Y, Yang LZ, Fang W. Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases. Neurochem Res 2024; 49:3187-3207. [PMID: 39292330 DOI: 10.1007/s11064-024-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Zijun Liu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Yu Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Lele Zixin Yang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China.
| |
Collapse
|
9
|
McComish SF, O'Sullivan J, Copas AMM, Imiolek M, Boyle NT, Crompton LA, Lane JD, Caldwell MA. Reactive astrocytes generated from human iPSC are pro-inflammatory and display altered metabolism. Exp Neurol 2024; 382:114979. [PMID: 39357593 DOI: 10.1016/j.expneurol.2024.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression. A prominent risk factor for many neurodegenerative diseases is neuroinflammation which is the purview of glial cells, such as astrocytes and microglia. Human in vitro models have the potential to reveal relevant disease specific mechanisms, through the study of individual cell types such as astrocytes or the addition of specific factors, such as those secreted by microglia. The aim of this study was to generate human cortical astrocytes, in order to assess their protein and gene expression, examine their reactivity profile in response to exposure to the microglial secreted factors IL-1α, TNFα and C1q and assess their functionality in terms of calcium signalling and metabolism. The successfully differentiated and stimulated reactive astrocytes display increased IL-6, RANTES and GM-CSF secretion, and increased expression of genes associated with reactivity including, IL-6, ICAM1, LCN2, C3 and SERPINA3. Functional assessment of these reactive astrocytes showed a delayed and sustained calcium response to ATP and a concomitant decrease in the expression of connexin-43. Furthermore, it was demonstrated these astrocytes had an increased glycolytic capacity with no effect on oxidative phosphorylation. These findings not only increase our understanding of astrocyte reactivity but also provides a functional platform for drug discovery.
Collapse
Affiliation(s)
- Sarah F McComish
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia O'Sullivan
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina Mac Mahon Copas
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Magdalena Imiolek
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Noreen T Boyle
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy A Crompton
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK; Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Maeve A Caldwell
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Amaral-Silva L, Santin J. Neural Processing without O 2 and Glucose Delivery: Lessons from the Pond to the Clinic. Physiology (Bethesda) 2024; 39:0. [PMID: 38624246 PMCID: PMC11573265 DOI: 10.1152/physiol.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brain stem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying nonmammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| | - Joseph Santin
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
11
|
Levy I, Arvidson R. Cephalic ganglia transcriptomics of the American cockroach Periplaneta americana (Blattodea: Blattidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:12. [PMID: 39688382 DOI: 10.1093/jisesa/ieae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
The American cockroach Periplaneta americana (L.) (Blattodea, Blattidae) has been a model organism for biochemical and physiological study for almost a century, however, its use does not benefit from the genetic tools found in key model species such as Drosophila melanogaster. To facilitate the use of the cockroach as a model system in neuroscience and to serve as a foundation for functional and translational experimentation, a transcriptome of the cephalic ganglia was assembled and annotated, and differential expression profiles between these ganglia were assessed. The transcriptome assembly yielded >400 k transcripts, with >40 k putative coding sequences. Gene ontology and protein domain searches indicate the cerebral and gnathal ganglia (GNG) have distinct genetic expression profiles. The developmental Toll signaling pathway appears to be active in the adult central nervous system (CNS), which may suggest a separate role for this pathway besides innate immune activation or embryonic development. The catabolic glycolytic and citric acid cycle enzymes are well represented in both ganglia, but key enzymes are more highly expressed in the GNG. Both ganglia express gluconeogenic and trehaloneogenic enzymes, suggesting a larger role of the CNS in regulating hemolymph sugar homeostasis than previously appreciated. The annotation and quantification of the cephalic ganglia transcriptome reveal both canonical and novel pathways in signaling and metabolism in an adult insect and lay a foundation for future functional and genetic analysis.
Collapse
Affiliation(s)
- Ilana Levy
- Undergraduate Program in Biochemistry, Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Arvidson
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. PKCδ is an activator of neuronal mitochondrial metabolism that mediates the spacing effect on memory consolidation. eLife 2024; 13:RP92085. [PMID: 39475218 PMCID: PMC11524582 DOI: 10.7554/elife.92085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| |
Collapse
|
13
|
Chang CP, Wu CW, Chern Y. Metabolic dysregulation in Huntington's disease: Neuronal and glial perspectives. Neurobiol Dis 2024; 201:106672. [PMID: 39306013 DOI: 10.1016/j.nbd.2024.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutant huntingtin protein with an abnormal CAG/polyQ expansion in the N-terminus of HTT exon 1. HD is characterized by progressive neurodegeneration and metabolic abnormalities, particularly in the brain, which accounts for approximately 20 % of the body's resting metabolic rate. Dysregulation of energy homeostasis in HD includes impaired glucose transporters, abnormal functions of glycolytic enzymes, changes in tricarboxylic acid (TCA) cycle activity and enzyme expression in the basal ganglia and cortical regions of both HD mouse models and HD patients. However, current understanding of brain cell behavior during energy dysregulation and its impact on neuron-glia crosstalk in HD remains limited. This review provides a comprehensive summary of the current understanding of the differences in glucose metabolism between neurons and glial cells in HD and how these differences contribute to disease development compared with normal conditions. We also discuss the potential impact of metabolic shifts on neuron-glia communication in HD. A deeper understanding of these metabolic alterations may reveal potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Ceyzériat K, Badina AM, Petrelli F, Montessuit S, Nicolaides A, Millet P, Savioz A, Martinou JC, Tournier BB. Inhibition of the mitochondrial pyruvate carrier in astrocytes reduces amyloid and tau accumulation in the 3xTgAD mouse model of Alzheimer's disease. Neurobiol Dis 2024; 200:106623. [PMID: 39103022 DOI: 10.1016/j.nbd.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's Disease (AD) is characterized by an accumulation of pathologic amyloid-beta (Aβ) and Tau proteins, neuroinflammation, metabolic changes and neuronal death. Reactive astrocytes participate in these pathophysiological processes by releasing pro-inflammatory molecules and recruiting the immune system, which further reinforces inflammation and contributes to neuronal death. Besides these neurotoxic effects, astrocytes can protect neurons by providing them with high amounts of lactate as energy fuel. Astrocytes rely on aerobic glycolysis to generate lactate by reducing pyruvate, the end product of glycolysis, through lactate dehydrogenase. Consequently, limited amounts of pyruvate enter astrocytic mitochondria through the Mitochondrial Pyruvate Carrier (MPC) to be oxidized. The MPC is a heterodimer composed of two subunits MPC1 and MPC2, the function of which in astrocytes has been poorly investigated. Here, we analyzed the role of the MPC in the pathogeny of AD, knowing that a reduction in overall glucose metabolism has been associated with a drop in cognitive performances and an accumulation of Aβ and Tau. We generated 3xTgAD mice in which MPC1 was knocked-out in astrocytes specifically and focused our study on the biochemical hallmarks of the disease, mainly Aβ and neurofibrillary tangle production. We show that inhibition of the MPC before the onset of the disease significantly reduces the quantity of Aβ and Tau aggregates in the brain of 3xTgAD mice, suggesting that acting on astrocytic glucose metabolism early on could hinder the progression of the disease.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- CIBM Center for Biomedical Imaging, Geneva, Switzerland; Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Aurélien M Badina
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Petrelli
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Sylvie Montessuit
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Alekos Nicolaides
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland
| | - Armand Savioz
- Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland.
| |
Collapse
|
15
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Gondáš E, Baranovičová E, Šofranko J, Murín R. Hyperglycemia Stimulates the Irreversible Catabolism of Branched-Chain Amino Acids and Generation of Ketone Bodies by Cultured Human Astrocytes. Biomedicines 2024; 12:1803. [PMID: 39200266 PMCID: PMC11351101 DOI: 10.3390/biomedicines12081803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes are considered to possess a noticeable role in brain metabolism and, as a partners in neuron-glia cooperation, to contribute to the synthesis, bioconversion, and regulation of the flux of substrates for neuronal metabolism. With the aim of investigating to what extent human astrocytes are metabolizing amino acids and by which compounds are they enriching their surroundings, we employed a metabolomics analysis of their culture media by 1H-NMR. In addition, we compared the composition of media with either 5 mM or 25 mM glucose. The quantitative analysis of culture media by 1H-NMR revealed that astrocytes readily dispose from their milieu glutamine, branched-chain amino acids, and pyruvate with significantly high rates, while they enrich the culture media with lactate, branched-chain keto acids, citrate, acetate, ketone bodies, and alanine. Hyperglycemia suppressed the capacity of astrocytes to release branched-chain 2-oxo acids, while stimulating the generation of ketone bodies. Our results highlight the active involvement of astrocytes in the metabolism of several amino acids and the regulation of key metabolic intermediates. The observed metabolic activities of astrocytes provide valuable insights into their roles in supporting neuronal function, brain metabolism, and intercellular metabolic interactions within the brain. Understanding the complex metabolic interactions between astrocytes and neurons is essential for elucidating brain homeostasis and the pathophysiology of neurological disorders. The observed metabolic activities of astrocytes provide hints about their putative metabolic roles in brain metabolism.
Collapse
Affiliation(s)
- Eduard Gondáš
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
| | - Jakub Šofranko
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
| | - Radovan Murín
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4D, 036 01 Martin, Slovakia;
| |
Collapse
|
17
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. PKCδ is an activator of neuronal mitochondrial metabolism that mediates the spacing effect on memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561186. [PMID: 38948698 PMCID: PMC11212906 DOI: 10.1101/2023.10.06.561186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Co-corresponding authors
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Co-corresponding authors
| |
Collapse
|
18
|
Pavlowsky A, Comyn T, Minatchy J, Geny D, Bun P, Danglot L, Preat T, Plaçais PY. Spaced training activates Miro/Milton-dependent mitochondrial dynamics in neuronal axons to sustain long-term memory. Curr Biol 2024; 34:1904-1917.e6. [PMID: 38642548 DOI: 10.1016/j.cub.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.
Collapse
Affiliation(s)
- Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Julia Minatchy
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - David Geny
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Philippe Bun
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Lydia Danglot
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
19
|
Pribbenow C, Owald D. Skewing information flow through pre- and postsynaptic plasticity in the mushroom bodies of Drosophila. Learn Mem 2024; 31:a053919. [PMID: 38876487 PMCID: PMC11199954 DOI: 10.1101/lm.053919.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
Animal brains need to store information to construct a representation of their environment. Knowledge of what happened in the past allows both vertebrates and invertebrates to predict future outcomes by recalling previous experience. Although invertebrate and vertebrate brains share common principles at the molecular, cellular, and circuit-architectural levels, there are also obvious differences as exemplified by the use of acetylcholine versus glutamate as the considered main excitatory neurotransmitters in the respective central nervous systems. Nonetheless, across central nervous systems, synaptic plasticity is thought to be a main substrate for memory storage. Therefore, how brain circuits and synaptic contacts change following learning is of fundamental interest for understanding brain computations tied to behavior in any animal. Recent progress has been made in understanding such plastic changes following olfactory associative learning in the mushroom bodies (MBs) of Drosophila A current framework of memory-guided behavioral selection is based on the MB skew model, in which antagonistic synaptic pathways are selectively changed in strength. Here, we review insights into plasticity at dedicated Drosophila MB output pathways and update what is known about the plasticity of both pre- and postsynaptic compartments of Drosophila MB neurons.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
20
|
Basu R, Preat T, Plaçais PY. Glial metabolism versatility regulates mushroom body-driven behavioral output in Drosophila. Learn Mem 2024; 31:a053823. [PMID: 38862167 PMCID: PMC11199944 DOI: 10.1101/lm.053823.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024]
Abstract
Providing metabolic support to neurons is now recognized as a major function of glial cells that is conserved from invertebrates to vertebrates. However, research in this field has focused for more than two decades on the relevance of lactate and glial glycolysis for neuronal energy metabolism, while overlooking many other facets of glial metabolism and their impact on neuronal physiology, circuit activity, and behavior. Here, we review recent work that has unveiled new features of glial metabolism, especially in Drosophila, in the modulation of behavioral traits involving the mushroom bodies (MBs). These recent findings reveal that spatially and biochemically distinct modes of glucose-derived neuronal fueling are implemented within the MB in a memory type-specific manner. In addition, cortex glia are endowed with several antioxidant functions, whereas astrocytes can serve as pro-oxidant agents that are beneficial to redox signaling underlying long-term memory. Finally, glial fatty acid oxidation seems to play a dual fail-safe role: first, as a mode of energy production upon glucose shortage, and, second, as a factor underlying the clearance of excessive oxidative load during sleep. Altogether, these integrated studies performed in Drosophila indicate that glial metabolism has a deterministic role on behavior.
Collapse
Affiliation(s)
- Ruchira Basu
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
21
|
Marygold SJ. The alpha-ketoacid dehydrogenase complexes of Drosophila melanogaster.. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001209. [PMID: 38741935 PMCID: PMC11089389 DOI: 10.17912/micropub.biology.001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/28/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The conserved family of alpha-ketoacid dehydrogenase complexes (AKDHCs) catalyze essential reactions in central metabolism and their dysregulation is implicated in several human diseases. Drosophila melanogaster provides an excellent model system to study the genetics and functions of these complexes. However, a systematic account of Drosophila AKDHCs and their composition has been lacking. Here, I identify and classify the genes encoding all Drosophila AKDHC subunits, update their functional annotations and integrate this work into the FlyBase database.
Collapse
Affiliation(s)
- Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| |
Collapse
|
22
|
Barros LF. Glial metabolism checkpoints memory. Nat Metab 2023; 5:1852-1853. [PMID: 37932429 DOI: 10.1038/s42255-023-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos-CECs, Valdivia, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| |
Collapse
|