1
|
Mayr L, Neyazi S, Schwark K, Trissal M, Beck A, Labelle J, Eder SK, Weiler-Wichtl L, Marques JG, de Biagi-Junior CAO, Lo Cascio C, Chapman O, Sridhar S, Kenkre R, Dutta A, Wang S, Wang J, Hack O, Nascimento A, Nguyen CM, Castellani S, Rozowsky JS, Groves A, Panditharatna E, Cruzeiro GAV, Haase RD, Tabatabai K, Madlener S, Wadden J, Adam T, Kong S, Miclea M, Patel T, Bruckner K, Senfter D, Lämmerer A, Supko J, Guntner AS, Palova H, Neradil J, Stepien N, Lötsch-Gojo D, Berger W, Leiss U, Rosenmayr V, Dorfer C, Dieckmann K, Peyrl A, Azizi AA, Baumgartner A, Slaby O, Pokorna P, Clark LM, Cameron A, Nguyen QD, Wakimoto H, Dubois F, Greenwald NF, Bandopadhayay P, Beroukhim R, Ligon K, Kramm C, Bronsema A, Bailey S, Stucklin AG, Mueller S, Skrypek M, Martinez N, Bowers DC, Jones DTW, Jones C, Jäger N, Sterba J, Müllauer L, Haberler C, Kumar-Sinha C, Chinnaiyan A, Mody R, Chavez L, Furtner J, Koschmann C, Gojo J, Filbin MG. Effective targeting of PDGFRA-altered high-grade glioma with avapritinib. Cancer Cell 2025; 43:740-756.e8. [PMID: 40086436 DOI: 10.1016/j.ccell.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/27/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
PDGFRA is crucial to tumorigenesis and frequently genomically altered in high-grade glioma (HGG). In a comprehensive dataset of pediatric HGG (n = 261), we detect PDGFRA mutations and/or amplifications in 15% of cases, suggesting PDGFRA as a therapeutic target. We reveal that the PDGFRA/KIT inhibitor avapritinib shows (1) selectivity for PDGFRA inhibition, (2) distinct patterns of subcellular effects, (3) in vitro and in vivo activity in patient-derived HGG models, and (4) effective blood-brain barrier penetration in mice and humans. Furthermore, we report preliminary clinical real-world experience using avapritinib in pediatric and young adult patients with predominantly recurrent/refractory PDGFRA-altered HGG (n = 8). Our early data demonstrate that avapritinib is well tolerated and results in radiographic response in 3/7 cases, suggesting a potential role for avapritinib in the treatment of HGG with specific PDGFRA alterations. Overall, these translational results underscore the therapeutic potential of PDGFRA inhibition with avapritinib in HGG.
Collapse
Affiliation(s)
- Lisa Mayr
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Kallen Schwark
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria Trissal
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Alexander Beck
- Center for Neuropathology and Prion Research, Ludwig Maximilians University Munich, Faculty of Medicine, Muenchen, 80539 Bayern, Germany
| | - Jenna Labelle
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sebastian K Eder
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna and St. Anna Children's Cancer Research Institute (CCRI), 1090 Vienna, Austria
| | - Liesa Weiler-Wichtl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Joana G Marques
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Carlos A O de Biagi-Junior
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Costanza Lo Cascio
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Owen Chapman
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Sunita Sridhar
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Rishaan Kenkre
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Aditi Dutta
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Shanqing Wang
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Jessica Wang
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Olivia Hack
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Cuong M Nguyen
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jacob S Rozowsky
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Groves
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca D Haase
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Kuscha Tabatabai
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Jack Wadden
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tiffany Adam
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Seongbae Kong
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Madeline Miclea
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tirth Patel
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katharina Bruckner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Lämmerer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Jeffrey Supko
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Armin S Guntner
- Institute for Analytical and General Chemistry, Johannes Kepler University, 4040 Linz, Austria
| | - Hana Palova
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrike Leiss
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Rosenmayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Dieckmann
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicia Baumgartner
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petra Pokorna
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Louise M Clark
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Amy Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Frank Dubois
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Noah F Greenwald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cancer Biology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02115, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA 02115, USA
| | - Keith Ligon
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Christof Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Annika Bronsema
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Simon Bailey
- Great North Childrens Hospital and Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, NE1 4LP Newcastle, UK
| | - Ana Guerreiro Stucklin
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, 8008 Zurich, Switzerland
| | - Sabine Mueller
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mary Skrypek
- Department of Pediatric Hematology-Oncology, Children's Minnesota, Minneapolis, MN 55404, USA
| | - Nina Martinez
- Department of Neurology & Neurological Surgery, Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel C Bowers
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, SM2 5NG London, UK
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 662630 Brno, Czech Republic
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rajen Mody
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lukas Chavez
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Julia Furtner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; Research Center of Medical Image Analysis and Artificial Intelligence, Danube Private University, 3500 Krems an der Donau, Austria
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Pulice JL, Meyerson M. Amplified dosage of the NKX2-1 lineage transcription factor controls its oncogenic role in lung adenocarcinoma. Mol Cell 2025; 85:1311-1329.e16. [PMID: 40139189 DOI: 10.1016/j.molcel.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Amplification-mediated oncogene overexpression is a critical and widespread driver event in cancer, yet our understanding of how amplification and dosage mediate oncogene regulation is limited. Here, we find that the most significant focal amplification event in lung adenocarcinoma (LUAD) targets a lineage "super-enhancer" near the NKX2-1 lineage transcription factor. The NKX2-1 super-enhancer is targeted by focal and co-amplification with NKX2-1 and controls NKX2-1 expression and regulation. We find that NKX2-1 directly controls enhancer accessibility to drive a lineage-addicted state in LUAD. We precisely map the effects of NKX2-1 dosage modulation upon both overexpression and knockdown and identify both linear and non-linear regulation by NKX2-1 dosage. We find that NKX2-1 is a widespread dependency in LUAD cell lines and that NKX2-1 confers persistence to EGFR inhibitors. Our data suggest a defining role for dosage in the oncogenic regulation of amplified NKX2-1 and that amplified NKX2-1 lineage addiction defines LUAD tumors.
Collapse
Affiliation(s)
- John L Pulice
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Gjoni K, Zhang S, Yan RE, Zhang B, Miller D, Resnick A, Dahmane N, Pollard KS. Machine learning-predicted chromatin organization landscape across pediatric tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645984. [PMID: 40236019 PMCID: PMC11996386 DOI: 10.1101/2025.03.28.645984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Structural variants (SVs) are increasingly recognized as important contributors to oncogenesis through their effects on 3D genome folding. Recent advances in whole-genome sequencing have enabled large-scale profiling of SVs across diverse tumors, yet experimental characterization of their individual impact on genome folding remains infeasible. Here, we leveraged a convolutional neural network, Akita, to predict disruptions in genome folding caused by somatic SVs identified in 61 tumor types from the Children's Brain Tumor Network dataset. Our analysis reveals significant variability in SV-induced disruptions across tumor types, with the most disruptive SVs coming from lymphomas and sarcomas, metastatic tumors, and germline cell tumors. Dimensionality reduction of disruption scores identified five recurrently disrupted regions enriched for high-impact SVs across multiple tumors. Some of these regions are highly disrupted despite not being highly mutated, and harbor tumor-associated genes and transcriptional regulators. To further interpret the functional relevance of high-scoring SVs, we integrated epigenetic data and developed a modified Activity-by-Contact scoring approach to prioritize SVs with disrupted genome contacts at active enhancers. This method highlighted highly disruptive SVs near key oncogenes, as well as novel candidate loci potentially implicated in tumorigenesis. These findings highlight the utility of machine learning for identifying novel SVs, loci, and genetic mechanisms contributing to pediatric cancers. This framework provides a foundation for future studies linking SV-driven regulatory changes to cancer pathogenesis.
Collapse
|
4
|
Chukwu W, Lee S, Crane A, Zhang S, Webster S, Dakhama O, Mittra I, Rauert C, Imielinski M, Beroukhim R, Dubois F, Dalin S. A sequence context-based approach for classifying tumor structural variants without paired normal samples. CELL REPORTS METHODS 2025; 5:100991. [PMID: 40081367 PMCID: PMC12049684 DOI: 10.1016/j.crmeth.2025.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Although several recent studies have characterized structural variants (SVs) in germline and cancer genomes independently, the genomic contexts of these SVs have not been comprehensively compared. We examined similarities and differences between 2 million germline and 115 thousand tumor SVs from a cohort of 963 patients from The Cancer Genome Atlas. We found significant differences in features related to their genomic sequences and localization that suggest differences between SV-generating processes and selective pressures. For example, our results show that features linked to transposon-mediated processes are associated with germline SVs, while somatic SVs more frequently show features characteristic of chromoanagenesis. These genomic differences enabled us to develop a classifier-the Germline and Tumor Structural Variant or "the great GaTSV" -that accurately distinguishes between germline and cancer SVs in tumor samples that lack a matched normal sample.
Collapse
Affiliation(s)
- Wolu Chukwu
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Siyun Lee
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Crane
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shu Zhang
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sophie Webster
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Oumayma Dakhama
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ipsa Mittra
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carlos Rauert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Department of Pathology and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frank Dubois
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany.
| | - Simona Dalin
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2025; 32:66-77. [PMID: 37828086 PMCID: PMC11748643 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
7
|
Dabin J, Giacomini G, Petit E, Polo SE. New facets in the chromatin-based regulation of genome maintenance. DNA Repair (Amst) 2024; 140:103702. [PMID: 38878564 DOI: 10.1016/j.dnarep.2024.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024]
Abstract
The maintenance of genome integrity by DNA damage response machineries is key to protect cells against pathological development. In cell nuclei, these genome maintenance machineries operate in the context of chromatin, where the DNA wraps around histone proteins. Here, we review recent findings illustrating how the chromatin substrate modulates genome maintenance mechanisms, focusing on the regulatory role of histone variants and post-translational modifications. In particular, we discuss how the pre-existing chromatin landscape impacts DNA damage formation and guides DNA repair pathway choice, and how DNA damage-induced chromatin alterations control DNA damage signaling and repair, and DNA damage segregation through cell divisions. We also highlight that pathological alterations of histone proteins may trigger genome instability by impairing chromosome segregation and DNA repair, thus defining new oncogenic mechanisms and opening up therapeutic options.
Collapse
Affiliation(s)
- Juliette Dabin
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Giulia Giacomini
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Eliane Petit
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France.
| |
Collapse
|
8
|
Mortenson KL, Dawes C, Wilson ER, Patchen NE, Johnson HE, Gertz J, Bailey SD, Liu Y, Varley KE, Zhang X. 3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression. Nat Commun 2024; 15:6130. [PMID: 39033128 PMCID: PMC11271278 DOI: 10.1038/s41467-024-50387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1, ETV1, CRKL, and ID4. Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC, on the same complex amplicons such as ecDNA. We characterized a MYC-ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.
Collapse
Affiliation(s)
- Katelyn L Mortenson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Courtney Dawes
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Emily R Wilson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nathan E Patchen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Hailey E Johnson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Swneke D Bailey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Surgery and Human Genetics, McGill University, Montreal, QC, Canada
| | - Yang Liu
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Mortenson KL, Dawes C, Wilson ER, Patchen NE, Johnson HE, Gertz J, Bailey SD, Liu Y, Varley KE, Zhang X. 3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576965. [PMID: 38328209 PMCID: PMC10849656 DOI: 10.1101/2024.01.23.576965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1 , ETV1 , CRKL , and ID4 . Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC , on the same complex amplicons such as ecDNA. We characterized a MYC - ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC 's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.
Collapse
|
10
|
Chukwu W, Lee S, Crane A, Zhang S, Webster S, Mittra I, Imielinski M, Beroukhim R, Dubois F, Dalin S. Comparison of germline and somatic structural variants in cancers reveal systematic differences in variant generating and selection processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561462. [PMID: 38106141 PMCID: PMC10723258 DOI: 10.1101/2023.10.09.561462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Although several recent studies have characterized structural variants (SVs) in germline and cancer genomes, the features of SVs in these different contexts have not been directly compared. We examined similarities and differences between 2 million germline and 115 thousand tumor SVs from a cohort of 963 patients from The Cancer Genome Atlas (TCGA). We found significant differences in features related to their genomic sequences and localization that suggest differences between SV-generating processes and selective pressures. For example, we found that transposon-mediated processes shape germline much more than somatic SVs, while somatic SVs more frequently show features characteristic of chromoanagenesis. These differences were extensive enough to enable us to develop a classifier - "the great GaTSV" - that accurately distinguishes between germline and cancer SVs in tumor samples that lack a matched normal sample.
Collapse
Affiliation(s)
- Wolu Chukwu
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Siyun Lee
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexander Crane
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shu Zhang
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sophie Webster
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ipsa Mittra
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Department of Pathology and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Frank Dubois
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin, Institute of Pathology
| | - Simona Dalin
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
11
|
Giacomini G, Piquet S, Chevallier O, Dabin J, Bai SK, Kim B, Siddaway R, Raught B, Coyaud E, Shan CM, Reid RJD, Toda T, Rothstein R, Barra V, Wilhelm T, Hamadat S, Bertin C, Crane A, Dubois F, Forne I, Imhof A, Bandopadhayay P, Beroukhim R, Naim V, Jia S, Hawkins C, Rondinelli B, Polo SE. Aberrant DNA repair reveals a vulnerability in histone H3.3-mutant brain tumors. Nucleic Acids Res 2024; 52:2372-2388. [PMID: 38214234 PMCID: PMC10954481 DOI: 10.1093/nar/gkad1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.
Collapse
Affiliation(s)
- Giulia Giacomini
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Sandra Piquet
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Odile Chevallier
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Juliette Dabin
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Siau-Kun Bai
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Byungjin Kim
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Robert Siddaway
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Takenori Toda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Viviana Barra
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Sabah Hamadat
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Chloé Bertin
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Alexander Crane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Frank Dubois
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Ignasi Forne
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University, Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University, Martinsried, Germany
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | | | - Sophie E Polo
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Zou S, Chen S, Rao G, Zhang G, Ma M, Peng B, Du X, Huang W, Lin W, Tian Y, Fu X. Extrachromosomal circular MiR-17-92 amplicon promotes HCC. Hepatology 2024; 79:79-95. [PMID: 37125628 DOI: 10.1097/hep.0000000000000435] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Extrachromosomal circular DNAs (eccDNAs) are prevalent in cancer genomes and emerge as a class of crucial yet less characterized oncogenic drivers. However, the structure, composition, genome-wide frequency, and contribution of eccDNAs in HCC, one of the most fatal and prevalent cancers, remain unexplored. In this study, we provide a comprehensive characterization of eccDNAs in human HCC and demonstrate an oncogenic role of microRNA (miRNA)-17-92-containing eccDNAs in tumor progression. APPROACH AND RESULTS Using the circle-sequencing method, we identify and characterize more than 230,000 eccDNAs from 4 paired samples of HCC tumor and adjacent nontumor liver tissues. EccDNAs are highly enriched in HCC tumors, preferentially originate from certain chromosomal hotspots, and are correlated with differential gene expression. Particularly, a series of eccDNAs carrying the miRNA-17-92 cluster are validated by outward PCR and Sanger sequencing. Quantitative PCR analyses reveal that miRNA-17-92-containing eccDNAs, along with the expression of their corresponding miRNAs, are elevated in HCC tumors and associated with poor outcomes and the age of HCC patients. More intriguingly, exogenous expression of artificial DNA circles harboring the miR-17-92 cluster, which is synthesized by the ligase-assisted minicircle accumulation method, can significantly accelerate HCC cell proliferation and migration. CONCLUSIONS These findings delineate the genome-wide eccDNAs profiling of HCC and highlight the functional significance of miRNA-containing eccDNAs in tumorigenesis, providing insight into HCC pathogenesis and cancer therapy, as well as eccDNA and miRNA biology.
Collapse
Affiliation(s)
- Sailan Zou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Shihan Chen
- Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Guocheng Rao
- Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Guixiang Zhang
- Department of General Surgery and Gastric Cancer Center, Division of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meilin Ma
- Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Boqiang Peng
- Department of General Surgery and Gastric Cancer Center, Division of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Du
- Department of General Surgery and Gastric Cancer Center, Division of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, Yaan People's Hospital, Yaan, Sichuan, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqiang Lin
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Liu NQ, Paassen I, Custers L, Zeller P, Teunissen H, Ayyildiz D, He J, Buhl JL, Hoving EW, van Oudenaarden A, de Wit E, Drost J. SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors. Nat Commun 2023; 14:7762. [PMID: 38040699 PMCID: PMC10692191 DOI: 10.1038/s41467-023-43498-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.
Collapse
Affiliation(s)
- Ning Qing Liu
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, the Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lars Custers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Peter Zeller
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dilara Ayyildiz
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jiayou He
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Juliane Laura Buhl
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Burocziova M, Danek P, Oravetzova A, Chalupova Z, Alberich-Jorda M, Macurek L. Ppm1d truncating mutations promote the development of genotoxic stress-induced AML. Leukemia 2023; 37:2209-2220. [PMID: 37709843 PMCID: PMC10624630 DOI: 10.1038/s41375-023-02030-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Hematopoietic stem cells (HSCs) ensure blood cell production during the life-time of an organism, and to do so they need to balance self-renewal, proliferation, differentiation, and migration in a steady state as well as in response to stress or injury. Importantly, aberrant proliferation of HSCs leads to hematological malignancies, and thus, tight regulation by various tumor suppressor pathways, including p53, is essential. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and promotes cell survival upon induction of genotoxic stress. Truncating mutations in the last exon of PPM1D lead to the production of a stable, enzymatically active protein and are commonly associated with clonal hematopoiesis. Using a transgenic mouse model, we demonstrate that truncated PPM1D reduces self-renewal of HSCs in basal conditions but promotes the development of aggressive AML after exposure to ionizing radiation. Inhibition of PPM1D suppressed the colony growth of leukemic stem and progenitor cells carrying the truncated PPM1D, and remarkably, it provided protection against irradiation-induced cell growth. Altogether, we demonstrate that truncated PPM1D affects HSC maintenance, disrupts normal hematopoiesis, and that its inhibition could be beneficial in the context of therapy-induced AML.
Collapse
Affiliation(s)
- Monika Burocziova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Anna Oravetzova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Zuzana Chalupova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, V Uvalu 84, Praha, 150 06, Czech Republic.
| | - Libor Macurek
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
| |
Collapse
|
15
|
Yang Y, Yang L. Somatic structural variation signatures in pediatric brain tumors. Cell Rep 2023; 42:113276. [PMID: 37851574 PMCID: PMC10748741 DOI: 10.1016/j.celrep.2023.113276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Brain cancer is the leading cause of cancer-related death in children. Somatic structural variations (SVs), large-scale alterations in DNA, remain poorly understood in pediatric brain tumors. Here, we detect a total of 13,199 high-confidence somatic SVs in 744 whole-genome sequences of pediatric brain tumors from the Pediatric Brain Tumor Atlas. The somatic SV occurrences have tremendous diversity among the cohort and across different tumor types. We decompose mutational signatures of clustered complex SVs, non-clustered complex SVs, and simple SVs separately to infer their mutational mechanisms. Our finding of many tumor types carrying unique sets of SV signatures suggests that distinct molecular mechanisms shape genome instability in different tumor types. The patterns of somatic SV signatures in pediatric brain tumors are substantially different from those in adult cancers. The convergence of multiple SV signatures on several major cancer driver genes implies vital roles of somatic SVs in disease progression.
Collapse
Affiliation(s)
- Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; University of Chicago Comprehensive Cancer Center, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Pulice JL, Meyerson M. Dosage amplification dictates oncogenic regulation by the NKX2-1 lineage factor in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563996. [PMID: 37994369 PMCID: PMC10664179 DOI: 10.1101/2023.10.26.563996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Amplified oncogene expression is a critical and widespread driver event in cancer, yet our understanding of how amplification-mediated elevated dosage mediates oncogenic regulation is limited. Here, we find that the most significant focal amplification event in lung adenocarcinoma (LUAD) targets a lineage super-enhancer near the NKX2-1 lineage transcription factor. The NKX2-1 super-enhancer is targeted by focal and co-amplification with NKX2-1, and activation or repression controls NKX2-1 expression. We find that NKX2-1 is a widespread dependency in LUAD cell lines, where NKX2-1 pioneers enhancer accessibility to drive a lineage addicted state in LUAD, and NKX2-1 confers persistence to EGFR inhibitors. Notably, we find that oncogenic NKX2-1 regulation requires expression above a minimum dosage threshold-NKX2-1 dosage below this threshold is insufficient for cell viability, enhancer remodeling, and TKI persistence. Our data suggest that copy-number amplification can be a gain-of-function alteration, wherein amplification elevates oncogene expression above a critical dosage required for oncogenic regulation and cancer cell survival.
Collapse
Affiliation(s)
- John L. Pulice
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Lead contact
| |
Collapse
|
17
|
Wang M, Sreenivas P, Sunkel BD, Wang L, Ignatius M, Stanton B. The 3D chromatin landscape of rhabdomyosarcoma. NAR Cancer 2023; 5:zcad028. [PMID: 37325549 PMCID: PMC10261698 DOI: 10.1093/narcan/zcad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue cancer with a lack of precision therapy options for patients. We hypothesized that with a general paucity of known mutations in RMS, chromatin structural driving mechanisms are essential for tumor proliferation. Thus, we carried out high-depth in situ Hi-C in representative cell lines and patient-derived xenografts (PDXs) to define chromatin architecture in each major RMS subtype. We report a comprehensive 3D chromatin structural analysis and characterization of fusion-positive (FP-RMS) and fusion-negative RMS (FN-RMS). We have generated spike-in in situ Hi-C chromatin interaction maps for the most common FP-RMS and FN-RMS cell lines and compared our data with PDX models. In our studies, we uncover common and distinct structural elements in large Mb-scale chromatin compartments, tumor-essential genes within variable topologically associating domains and unique patterns of structural variation. Our high-depth chromatin interactivity maps and comprehensive analyses provide context for gene regulatory events and reveal functional chromatin domains in RMS.
Collapse
Affiliation(s)
- Meng Wang
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
| | - Prethish Sreenivas
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Benjamin D Sunkel
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
| | - Long Wang
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Myron Ignatius
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Benjamin Z Stanton
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
18
|
K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nat Genet 2022; 54:1865-1880. [PMID: 36471070 PMCID: PMC9742294 DOI: 10.1038/s41588-022-01205-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.
Collapse
|
19
|
Liu I, Jiang L, Samuelsson ER, Marco Salas S, Beck A, Hack OA, Jeong D, Shaw ML, Englinger B, LaBelle J, Mire HM, Madlener S, Mayr L, Quezada MA, Trissal M, Panditharatna E, Ernst KJ, Vogelzang J, Gatesman TA, Halbert ME, Palova H, Pokorna P, Sterba J, Slaby O, Geyeregger R, Diaz A, Findlay IJ, Dun MD, Resnick A, Suvà ML, Jones DTW, Agnihotri S, Svedlund J, Koschmann C, Haberler C, Czech T, Slavc I, Cotter JA, Ligon KL, Alexandrescu S, Yung WKA, Arrillaga-Romany I, Gojo J, Monje M, Nilsson M, Filbin MG. The landscape of tumor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age and location. Nat Genet 2022; 54:1881-1894. [PMID: 36471067 PMCID: PMC9729116 DOI: 10.1038/s41588-022-01236-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in diffuse midline gliomas (DMGs) of the childhood pons but are also increasingly recognized in adults. Their potential heterogeneity at different ages and midline locations is vastly understudied. Here, through dissecting the single-cell transcriptomic, epigenomic and spatial architectures of a comprehensive cohort of patient H3-K27M DMGs, we delineate how age and anatomical location shape glioma cell-intrinsic and -extrinsic features in light of the shared driver mutation. We show that stem-like oligodendroglial precursor-like cells, present across all clinico-anatomical groups, display varying levels of maturation dependent on location. We reveal a previously underappreciated relationship between mesenchymal cancer cell states and age, linked to age-dependent differences in the immune microenvironment. Further, we resolve the spatial organization of H3-K27M DMG cell populations and identify a mitotic oligodendroglial-lineage niche. Collectively, our study provides a powerful framework for rational modeling and therapeutic interventions.
Collapse
Affiliation(s)
- Ilon Liu
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Li Jiang
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Erik R. Samuelsson
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sergio Marco Salas
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alexander Beck
- grid.5252.00000 0004 1936 973XCenter for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Olivia A. Hack
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Daeun Jeong
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - McKenzie L. Shaw
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Bernhard Englinger
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.22937.3d0000 0000 9259 8492Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jenna LaBelle
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Hafsa M. Mire
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Sibylle Madlener
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michael A. Quezada
- grid.168010.e0000000419368956Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - Maria Trissal
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Eshini Panditharatna
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Kati J. Ernst
- grid.7497.d0000 0004 0492 0584Hopp Children’s Cancer Center Heidelberg (KiTZ), Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jayne Vogelzang
- grid.65499.370000 0001 2106 9910Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Taylor A. Gatesman
- grid.21925.3d0000 0004 1936 9000Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Matthew E. Halbert
- grid.21925.3d0000 0004 1936 9000Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Hana Palova
- grid.10267.320000 0001 2194 0956Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petra Pokorna
- grid.10267.320000 0001 2194 0956Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jaroslav Sterba
- Pediatric Oncology Department, University Hospital Brno, Faculty of Medicine, Masaryk University, ICRC, Brno, Czech Republic
| | - Ondrej Slaby
- grid.10267.320000 0001 2194 0956Central European Institute of Technology, Masaryk University, Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Rene Geyeregger
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria ,grid.416346.2Department of Clinical Cell Biology and FACS Core Unit, St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Aaron Diaz
- grid.266102.10000 0001 2297 6811Department of Neurological Surgery, University of California San Francisco, San Francisco, CA USA
| | - Izac J. Findlay
- grid.266842.c0000 0000 8831 109XCancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales Australia ,grid.413648.cPrecision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales Australia
| | - Matthew D. Dun
- grid.266842.c0000 0000 8831 109XCancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales Australia ,grid.413648.cPrecision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales Australia
| | - Adam Resnick
- grid.239552.a0000 0001 0680 8770Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Mario L. Suvà
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Department of Pathology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA USA
| | - David T. W. Jones
- grid.7497.d0000 0004 0492 0584Hopp Children’s Cancer Center Heidelberg (KiTZ), Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sameer Agnihotri
- grid.21925.3d0000 0004 1936 9000Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Jessica Svedlund
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Carl Koschmann
- grid.412590.b0000 0000 9081 2336Division of Pediatric Hematology/Oncology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI USA
| | - Christine Haberler
- grid.22937.3d0000 0000 9259 8492Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- grid.22937.3d0000 0000 9259 8492Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jennifer A. Cotter
- grid.239546.f0000 0001 2153 6013Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA USA
| | - Keith L. Ligon
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.65499.370000 0001 2106 9910Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Pathology, Brigham and Women’s Hospital, Boston, MA USA ,grid.2515.30000 0004 0378 8438Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - Sanda Alexandrescu
- grid.2515.30000 0004 0378 8438Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - W. K. Alfred Yung
- grid.240145.60000 0001 2291 4776Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Isabel Arrillaga-Romany
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Cancer Center, Boston, MA USA
| | - Johannes Gojo
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michelle Monje
- grid.168010.e0000000419368956Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Stanford, CA USA
| | - Mats Nilsson
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mariella G. Filbin
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| |
Collapse
|
20
|
Tsai JW, Cejas P, Wang DK, Patel S, Wu DW, Arounleut P, Wei X, Zhou N, Syamala S, Dubois FP, Crane A, Pelton K, Vogelzang J, Sousa C, Baguette A, Chen X, Condurat AL, Dixon-Clarke SE, Zhou KN, Lu SD, Gonzalez EM, Chacon MS, Digiacomo JJ, Kumbhani R, Novikov D, Hunter J, Tsoli M, Ziegler DS, Dirksen U, Jager N, Balasubramanian GP, Kramm CM, Nathrath M, Bielack S, Baker SJ, Zhang J, McFarland JM, Getz G, Aguet F, Jabado N, Witt O, Pfister SM, Ligon KL, Hovestadt V, Kleinman CL, Long H, Jones DT, Bandopadhayay P, Phoenix TN. FOXR2 Is an Epigenetically Regulated Pan-Cancer Oncogene That Activates ETS Transcriptional Circuits. Cancer Res 2022; 82:2980-3001. [PMID: 35802025 PMCID: PMC9437574 DOI: 10.1158/0008-5472.can-22-0671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.
Collapse
Affiliation(s)
- Jessica W. Tsai
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Dayle K. Wang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Smruti Patel
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David W. Wu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Phonepasong Arounleut
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Xin Wei
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Ningxuan Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Sudeepa Syamala
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Frank P.B. Dubois
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alexander Crane
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristine Pelton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jayne Vogelzang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Cecilia Sousa
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexandra L. Condurat
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sarah E. Dixon-Clarke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts
| | - Kevin N. Zhou
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sophie D. Lu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Elizabeth M. Gonzalez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Madison S. Chacon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Jeromy J. Digiacomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Rushil Kumbhani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Dana Novikov
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - J'Ya Hunter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - David S. Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Uta Dirksen
- West German Cancer Center, Pediatrics III, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, Germany
| | - Natalie Jager
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gnana Prakash Balasubramanian
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christof M. Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Michaela Nathrath
- Department of Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany
- Children's Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Suzanne J. Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, H3A 0C7, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, Canada
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology, and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Disease (NCT) Network, Germany
| | - Stefan M. Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology, and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Disease (NCT) Network, Germany
| | - Keith L. Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Volker Hovestadt
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Claudia L. Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 0C7, Canada
| | - Henry Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - David T.W. Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
21
|
Mischel PS, Bafna V. Form follows function in cancer genomes. NATURE CANCER 2022; 3:905-906. [PMID: 35999307 DOI: 10.1038/s43018-022-00428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Paul S Mischel
- Department of Pathology, Stanford Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Cancer Grand Challenges eDyNAmiC team, Cancer Research UK, London, UK.
| | - Vineet Bafna
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Cancer Grand Challenges eDyNAmiC team, Cancer Research UK, London, UK.
- Department of Computer Science and Engineering and Halicioglu Data Sciences Institute, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|