1
|
Mariniello A, Borgeaud M, Weiner M, Frisone D, Kim F, Addeo A. Primary and Acquired Resistance to Immunotherapy with Checkpoint Inhibitors in NSCLC: From Bedside to Bench and Back. BioDrugs 2025; 39:215-235. [PMID: 39954220 PMCID: PMC11906525 DOI: 10.1007/s40259-024-00700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 02/17/2025]
Abstract
Immunotherapy with checkpoint inhibitors has become the cornerstone of systemic treatment for non-oncogene addicted non-small-cell lung cancer. Despite its pivotal role, a significant proportion of patients-approximately 70-85%-either exhibit primary resistance to PD-1 blockade or develop acquired resistance following an initial benefit, even in combination with chemotherapy and/or anti-CTLA-4 agents. The phenomenon of primary and acquired resistance to immunotherapy represents a critical clinical challenge, largely based on our incomplete understanding of the mechanisms of action of immunotherapy, and the resulting lack of accurate predictive biomarkers. Here, we review the definitions and explore the proposed mechanisms of primary and acquired resistance, including those related to the tumor microenvironment, systemic factors, and intrinsic tumor characteristics. We also discuss translational data on adaptive changes within tumor cells and the immune infiltrate following exposure to checkpoint inhibitors. Lastly, we offer a comprehensive overview of current and emerging therapeutic strategies designed to prevent primary resistance and counteract acquired resistance.
Collapse
Affiliation(s)
- Annapaola Mariniello
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Maxime Borgeaud
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Marc Weiner
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Daniele Frisone
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Floryane Kim
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland.
| |
Collapse
|
2
|
Brown MC, Low JT, Bowie ML, Ashley DM. Taking the STING out of radiotherapy: STING checkpoints mediate radiation resistance. J Clin Invest 2024; 134:e186547. [PMID: 39621308 PMCID: PMC11601916 DOI: 10.1172/jci186547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
The cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway is a critical driver of type I interferon (IFN-I) and antitumor CD8+ T cell responses after radiotherapy (RT). In this issue of the JCI, two reports describe mechanisms that restrained STING signaling and abrogated antitumor immunity after RT. Wen, Wang, and colleagues discovered that IFN-I mediated the induction of YTHDF1, an RNA N6-methyladenosine-binding protein, in DCs after RT promoted cathepsin-mediated STING degradation. Zhang, Deng, Wu, and colleagues discovered that hemeoxygenase 1 (HO-1) was induced and proteolytically cleaved after RT to suppress cGAS cytoplasmic export as well as STING oligomerization at the ER. Blocking the STING-suppressive functions of YTHDF1 and HO-1, respectively, improved antitumor T cell immunity and tumor control after RT. Together, these studies support the development of clinical avenues to sustain STING signaling during RT, a standard treatment for approximately 50% of malignancies.
Collapse
|
3
|
Liu X, Fan Y, Zhang X, Li L, Yang C, Ma X, Bai G, Sun D, Wang Y, Wang J, Li Y, Shi Y, Liu J, Zhang Y, Wang H. Sequential delivery of photosensitizers and checkpoint inhibitors by engineered bacteria for enhanced cancer photodynamic immunotherapy. Biotechnol Bioeng 2024; 121:3881-3892. [PMID: 39138638 DOI: 10.1002/bit.28829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Engineered bacteria-based cancer therapy has increasingly been considered to be a promising therapeutic strategy due to the development of synthetic biology. Wherein, engineering bacteria-mediated photodynamic therapy (PDT)-immunotherapy shows greater advantages and potential in treatment efficiency than monotherapy. However, the unsustainable regeneration of photosensitizers (PSs) and weak immune responses limit the therapeutic efficiency. Herein, we developed an engineered bacteria-based delivery system for sequential delivery of PSs and checkpoint inhibitors in cancer PDT-immunotherapy. The biosynthetic pathway of 5-aminolevulinic acid (5-ALA) was introduced into Escherichia coli, yielding a supernatant concentration of 172.19 mg/L after 10 h of growth. And another strain was endowed with the light-controllable releasement of anti-programmed cell death-ligand 1 nanobodies (anti-PD-L1). This system exhibited a collaborative effect, where PDT initiated tumor cell death and the released tumor cell fragments stimulated immunity, followed by the elimination of residual tumor cells. The tumor inhibition rate reached 74.97%, and the portion of activated T cells and inflammatory cytokines were reinforced. The results demonstrated that the engineered bacteria-based collaborative system could sequentially deliver therapeutic substance and checkpoint inhibitors, and achieve good therapeutic therapy. This paper will provide a new perspective for the cancer PDT-immunotherapy.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Yali Fan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Lianyue Li
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Guijie Bai
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Dawei Sun
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Yaxin Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Junyi Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Yong Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| |
Collapse
|
4
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Guan Y, Li X, Yang H, Xu S, Shi L, Liu Y, Kong L, Qin Y. Role and mechanism of IRF9 in promoting the progression of rheumatoid arthritis by regulating macrophage polarization via PSMA5. Heliyon 2024; 10:e35589. [PMID: 39170377 PMCID: PMC11336755 DOI: 10.1016/j.heliyon.2024.e35589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Aim To explore the mechanisms of IRF9 in the progression of rheumatoid arthritis(RA), and the effects of IRF9 on M1/M2 polarization. Methods RA dataset (GSE55457) was downloaded from GEO. Correlation analysis between IRF9 and its downstream target protein PSMA5 was performed using bioinformatics analysis. The M1/M2 cell ratio of peripheral blood mononuclear cells which from 20 healthy specimen and 40 RA patients was determined. The expression of IRF9 and PSMA5 was detected using qPCR and Western blot. Then, knockdown IRF9 in RAW264.7 cell line (sh-IRF9 RAW264.7) was constructed. The effect of sh-IRF9 RAW264.7 on RA was explored by constructing a CIA mouse model. Results IRF9 is upregulated in RA and is of good early screening effect. The results of pathway analysis showed that IRF9 targets and regulates the PSMA5 signaling pathway. IRF9 and PSMA5 were significantly elevated in RA patients, M1/M2 ratio was also increased. The effects of IRF9 on RAW264.7 macrophages were deeply explored in vitro, revealing that knockdown of IRF9 suppressed PSMA5, M1/M2 ratio and the secretion of pro-inflammatory factor in RAW264.7. In mouse in vivo experiments, sh-IRF9 RAW264.7 cells were found to modulate RA by downregulating PSMA5, modulating the M1/M2 ratio through enhancing the anti-inflammatory factor, and suppressing the pro-inflammatory factor. Conclusion IRF9 promoted the progression of RA via regulating macrophage polarization through PSMA5.
Collapse
Affiliation(s)
- Yue Guan
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xin Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hemin Yang
- Central Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Siyu Xu
- Inspection Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lidong Shi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yangyang Liu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lingdan Kong
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ying Qin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
6
|
Mathew D, Marmarelis ME, Foley C, Bauml JM, Ye D, Ghinnagow R, Ngiow SF, Klapholz M, Jun S, Zhang Z, Zorc R, Davis CW, Diehn M, Giles JR, Huang AC, Hwang WT, Zhang NR, Schoenfeld AJ, Carpenter EL, Langer CJ, Wherry EJ, Minn AJ. Combined JAK inhibition and PD-1 immunotherapy for non-small cell lung cancer patients. Science 2024; 384:eadf1329. [PMID: 38900877 PMCID: PMC11327955 DOI: 10.1126/science.adf1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/05/2024] [Indexed: 06/22/2024]
Abstract
Persistent inflammation driven by cytokines such as type-one interferon (IFN-I) can cause immunosuppression. We show that administration of the Janus kinase 1 (JAK1) inhibitor itacitinib after anti-PD-1 (programmed cell death protein 1) immunotherapy improves immune function and antitumor responses in mice and results in high response rates (67%) in a phase 2 clinical trial for metastatic non-small cell lung cancer. Patients who failed to respond to initial anti-PD-1 immunotherapy but responded after addition of itacitinib had multiple features of poor immune function to anti-PD-1 alone that improved after JAK inhibition. Itacitinib promoted CD8 T cell plasticity and therapeutic responses of exhausted and effector memory-like T cell clonotypes. Patients with persistent inflammation refractory to itacitinib showed progressive CD8 T cell terminal differentiation and progressive disease. Thus, JAK inhibition may improve the efficacy of anti-PD-1 immunotherapy by pivoting T cell differentiation dynamics.
Collapse
Affiliation(s)
- Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melina E. Marmarelis
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caitlin Foley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua M. Bauml
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darwin Ye
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reem Ghinnagow
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Klapholz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Soyeong Jun
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhaojun Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Zorc
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christiana W. Davis
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maximillian Diehn
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Josephine R. Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C. Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy R. Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam J. Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erica L. Carpenter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey J. Langer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J. Minn
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
8
|
Zhu Q, Yang Y, Chen K, Zhang Q, Huang Y, Jian S. Diffuse large B-cell lymphoma: the significance of CD8 + tumor-infiltrating lymphocytes exhaustion mediated by TIM3/Galectin-9 pathway. J Transl Med 2024; 22:174. [PMID: 38369502 PMCID: PMC10874540 DOI: 10.1186/s12967-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Overexpression of T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3) is related to the exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs) in diffuse large B-cell lymphoma (DLBCL). However, the mechanism of TIM3-mediated CD8+TILs exhaustion in DLBCL remains poorly understood. Therefore, we aimed to clarify the potential pathway involved in TIM3-mediated CD8+TILs exhaustion and its significance in DLBCL. METHODS The expression of TIM3 and its correlation with CD8+TILs exhaustion, the key ligand of TIM3, and the potential pathway of TIM3-mediated CD8+TILs exhaustion in DLBCL were analyzed using single-cell RNA sequencing and validated by RNA sequencing. The biological significance of TIM3-related pathway in DLBCL was investigated based on RNA sequencing, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction data. Finally, the possible regulatory mechanism of TIM3-related pathway in DLBCL was explored using single-cell RNA sequencing and RNA sequencing. RESULTS Our results demonstrated that CD8+TILs, especially the terminally exhausted state, were the major clusters that expressed TIM3 in DLBCL. Galectin-9, mainly expressed in M2 macrophages, is the key ligand of TIM3 and can induce the exhaustion of CD8+TILs through TIM3/Galectin-9 pathway. Meanwhile, high TIM3/Galectin-9 enrichment is related to immunosuppressive tumor microenvironment, severe clinical manifestations, inferior prognosis, and poor response to CHOP-based chemotherapy, and can predict the clinical efficacy of immune checkpoint blockade therapy in DLBCL. Furthermore, the TIM3/Galectin-9 enrichment in DLBCL may be regulated by the IFN-γ signaling pathway. CONCLUSIONS Our study highlights that TIM3/Galectin-9 pathway plays a crucial role in CD8+TILs exhaustion and the immune escape of DLBCL, which facilitates further functional studies and could provide a theoretical basis for the development of novel immunotherapy in DLBCL.
Collapse
Affiliation(s)
- Qiqi Zhu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Yiming Yang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Kexin Chen
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Qiaoyu Zhang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Yifan Huang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Shunhai Jian
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Type 1 interferons (IFN-I) are of increasing interest across a wide range of autoimmune rheumatic diseases. Historically, research into their role in rheumatoid arthritis (RA) has been relatively neglected, but recent work continues to highlight a potential contribution to RA pathophysiology. RECENT FINDINGS We emphasise the importance of disease stage when examining IFN-I in RA and provide an overview on how IFN-I may have a direct role on a variety of relevant cellular functions. We explore how clinical trajectory may be influenced by increased IFN-I signalling, and also, the limitations of scores composed of interferon response genes. Relevant environmental triggers and inheritable RA genetic risk relating to IFN-I signalling are explored with emphasis on intriguing data potentially linking IFN-I exposure, epigenetic changes, and disease relevant processes. Whilst these data cumulatively illustrate a likely role for IFN-I in RA, they also highlight the knowledge gaps, particularly in populations at risk for RA, and suggest directions for future research to both better understand IFN-I biology and inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chung M A Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Faye A H Cooles
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
10
|
Ascierto PA, Casula M, Bulgarelli J, Pisano M, Piccinini C, Piccin L, Cossu A, Mandalà M, Ferrucci PF, Guidoboni M, Rutkowski P, Ferraresi V, Arance A, Guida M, Maiello E, Gogas H, Richtig E, Fierro MT, Lebbe C, Helgadottir H, Queirolo P, Spagnolo F, Tucci M, Del Vecchio M, Cao MG, Minisini AM, De Placido S, Sanmamed MF, Mallardo D, Paone M, Vitale MG, Melero I, Grimaldi AM, Giannarelli D, Dummer R, Sileni VC, Palmieri G. Sequential immunotherapy and targeted therapy for metastatic BRAF V600 mutated melanoma: 4-year survival and biomarkers evaluation from the phase II SECOMBIT trial. Nat Commun 2024; 15:146. [PMID: 38167503 PMCID: PMC10761671 DOI: 10.1038/s41467-023-44475-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
No prospective data were available prior to 2021 to inform selection between combination BRAF and MEK inhibition versus dual blockade of programmed cell death protein-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) as first-line treatment options for BRAFV600-mutant melanoma. SECOMBIT (NCT02631447) was a randomized, three-arm, noncomparative phase II trial in which patients were randomized to one of two sequences with immunotherapy or targeted therapy first, with a third arm in which an 8-week induction course of targeted therapy followed by a planned switch to immunotherapy was the first treatment. BRAF/MEK inhibitors were encorafenib plus binimetinib and checkpoint inhibitors ipilimumab plus nivolumab. Primary outcome of overall survival was previously reported, demonstrating improved survival with immunotherapy administered until progression and followed by BRAF/MEK inhibition. Here we report 4-year survival outcomes, confirming long-term benefit with first-line immunotherapy. We also describe preliminary results of predefined biomarkers analyses that identify a trend toward improved 4-year overall survival and total progression-free survival in patients with loss-of-function mutations affecting JAK or low baseline levels of serum interferon gamma (IFNy). These long-term survival outcomes confirm immunotherapy as the preferred first-line treatment approach for most patients with BRAFV600-mutant metastatic melanoma, and the biomarker analyses are hypothesis-generating for future investigations of predictors of durable benefit with dual checkpoint blockade and targeted therapy.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics. I.N.T. IRCCS Fondazione "G. Pascale", Napoli, Italy.
| | - Milena Casula
- Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari - Unit of Cancer Genetics, IRGB-CNR, 07100, Sassari, Italy
| | - Jenny Bulgarelli
- Immunotherapy, Cell Therapy Unit and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Marina Pisano
- Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari - Unit of Cancer Genetics, IRGB-CNR, 07100, Sassari, Italy
| | - Claudia Piccinini
- Immunotherapy, Cell Therapy Unit and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luisa Piccin
- Melanoma Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Antonio Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Mario Mandalà
- University of Perugia, Perugia, Italy
- Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Bergamo, Italy
| | - Pier Francesco Ferrucci
- Biotherapy of Tumors Unit, Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Massimo Guidoboni
- Immunotherapy, Cell Therapy Unit and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 -, Warsaw, Poland
| | - Virginia Ferraresi
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ana Arance
- Department of Medical Oncology, Hospital Clínic Barcelona, 08036, Barcelona, Spain
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto dei Tumori "Giovanni Paolo II", Bari, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Maria Teresa Fierro
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Turin, Italy
| | - Celeste Lebbe
- Dermato-Oncology and CIC AP-HP Hôpital Saint Louis,Cancer Institute APHP. Nord-Université Paris Cite F-75010, Paris, INSERM U976, France
| | - Hildur Helgadottir
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Paola Queirolo
- Skin Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Division of melanoma Sarcoma and Rare Tumors, IRCCS European Institute of Oncology, Milan, Italy
| | | | - Marco Tucci
- Department of Interdisciplinary Medicine, Oncology Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Michele Del Vecchio
- Unit of Melanoma Medical Oncology, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Gonzales Cao
- Department of Medical Oncology, University Hospital Dexeus, Barcelona, Spain
| | | | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Miguel F Sanmamed
- Department of Interdisciplinary Medicine, Oncology Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Domenico Mallardo
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics. I.N.T. IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Miriam Paone
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics. I.N.T. IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Maria Grazia Vitale
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics. I.N.T. IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Ignacio Melero
- Department of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Antonio M Grimaldi
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics. I.N.T. IRCCS Fondazione "G. Pascale", Napoli, Italy
- Medical Oncology Unit, AORN San Pio, Benevento, Italy
| | - Diana Giannarelli
- Fondazione Policlinico Universitario A. Gemelli, IRCCS - Facility of Epidemiology and Biostatistics, Rome, Italy
| | - Reinhard Dummer
- Department of Dermatology, University and University Hospital Zurich, Zurich, Switzerland
| | | | - Giuseppe Palmieri
- Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari - Unit of Cancer Genetics, IRGB-CNR, 07100, Sassari, Italy
| |
Collapse
|
11
|
Sarkar SN, Harioudh MK, Shao L, Perez J, Ghosh A. The Many Faces of Oligoadenylate Synthetases. J Interferon Cytokine Res 2023; 43:487-494. [PMID: 37751211 PMCID: PMC10654648 DOI: 10.1089/jir.2023.0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/27/2023] Open
Abstract
2'-5' Oligoadenylate synthetases (OAS) are interferon-stimulated genes that are most well-known to protect hosts from viral infections. They are evolutionarily related to an ancient family of Nucleotidyltransferases, which are primarily involved in pathogen-sensing and innate immune response. Classical function of OAS proteins involves double-stranded RNA-stimulated polymerization of adenosine triphosphate in 2'-5' oligoadenylates (2-5A), which can activate the latent RNase (RNase L) to degrade RNA. However, accumulated evidence over the years have suggested alternative mode of antiviral function of several OAS family proteins. Furthermore, recent studies have connected some OAS proteins with wider function beyond viral infection. Here, we review some of the canonical and noncanonical functions of OAS proteins and their mechanisms.
Collapse
Affiliation(s)
- Saumendra N. Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Munesh K. Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lulu Shao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arundhati Ghosh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Yang R, Du Y, Zhang M, Liu Y, Feng H, Liu R, Yang B, Xiao J, He P, Niu F. Multi-omics analysis reveals interferon-stimulated gene OAS1 as a prognostic and immunological biomarker in pan-cancer. Front Immunol 2023; 14:1249731. [PMID: 37928544 PMCID: PMC10623006 DOI: 10.3389/fimmu.2023.1249731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction OAS1(2'-5'-oligoadenylate synthetase 1) is a member of the Interferon-Stimulated Genes which plays an important role in the antiviral process. In recent years, the role of OAS1 in tumors has attracted attention, and it was found to be associated with prognosis in several tumors. However, the mechanism by which OAS1 affects tumors is unclear and pan-cancer study of OAS1 is necessary to better understand its implication in cancers. Methods The expression, prognostic value, genetic alteration, alternative splicing events of OAS1 in pan-cancers were analyzed using TCGA, GTEx, HPA, GEPIA and OncoSplicing databases. OAS1 associated immune cell infiltration was evaluated using the ESTIMATE, xCell, CIBERSORT and QUANTISEQ algorithm. Single cell transcriptome data download using TISH database. Finally, the roles of the OAS1 on apoptosis, migration and invasion were investigated in two pancreatic cancer cells. Results Our results revealed significant differences in OAS1 expression among various tumors, which had prognostic implications. In addition, we investigated the impact of OAS1 on genomic stability, methylation status, and other factors across different types of cancer, and the effects of these factors on prognosis. Notably, our study also demonstrated that OAS1 overexpression can contribute to CTL dysfunction and macrophage M2 polarization. In addition, cell experiments showed that the knockdown of OAS1 could reduce the invasive ability and increased the apoptosis rate of PAAD cells. Discussion These results confirmed that OAS1 could be a prognostic biomarker and therapeutic target for its potential role in CTL dysfunction and macrophage M2 polarization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pengcheng He
- Department of Hematology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fan Niu
- Department of Hematology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Yuan C, He Y, Xie K, Feng L, Gao S, Cai L. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Front Cell Infect Microbiol 2023; 13:1282431. [PMID: 37868345 PMCID: PMC10585369 DOI: 10.3389/fcimb.2023.1282431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The microbiota gut brain (MGB) axis has been shown to play a significant role in the regulation of inflammatory and infective diseases. Exploring the structure and communication mode of MGB axis is crucial for understanding its role in diseases, and studying the signaling pathways and regulatory methods of MGB axis regulation in diseases is also of profound significance for future clinical research. This article reviews the composition, communication mechanism of MGB axis and its role in inflammatory and infective diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD), depression, psoriasis, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). In addition, our investigation delved into the regulatory functions of the inflammasome, IFN-I, NF-κB, and PARK7/DJ-1 innate immune signaling pathway in the context of inflammatory and infective diseases. Ultimately, we discussed the efficacy of various interventions, including fecal microbiota transplantation (FMT), antibiotics, probiotics, prebiotics, synbiotics, and postbiotics, in the management of inflammatory and infective diseases. Understanding the role and mechanism of the MGB axis might make positive effects in the treatment of inflammatory and infective diseases.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Wee Y, Wang J, Wilson EC, Rich CP, Rogers A, Tong Z, DeGroot E, Gopal YV, Davies MA, Ekiz HA, Tay JK, Stubben C, Boucher KM, Oviedo JM, Fairfax KC, Williams MA, Holmen SL, Wolff RK, Grossmann AH. ARF6-dependent endocytic trafficking of the Interferon-γ receptor drives adaptive immune resistance in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560199. [PMID: 37873189 PMCID: PMC10592860 DOI: 10.1101/2023.09.29.560199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Adaptive immune resistance (AIR) is a protective process used by cancer to escape elimination by CD8+ T cells. Inhibition of immune checkpoints PD-1 and CTLA-4 specifically target Interferon-gamma (IFNγ)-driven AIR. AIR begins at the plasma membrane where tumor cell-intrinsic cytokine signaling is initiated. Thus, plasma membrane remodeling by endomembrane trafficking could regulate AIR. Herein we report that the trafficking protein ADP-Ribosylation Factor 6 (ARF6) is critical for IFNγ-driven AIR. ARF6 prevents transport of the receptor to the lysosome, augmenting IFNγR expression, tumor intrinsic IFNγ signaling and downstream expression of immunosuppressive genes. In murine melanoma, loss of ARF6 causes resistance to immune checkpoint blockade (ICB). Likewise, low expression of ARF6 in patient tumors correlates with inferior outcomes with ICB. Our data provide new mechanistic insights into tumor immune escape, defined by ARF6-dependent AIR, and support that ARF6-dependent endomembrane trafficking of the IFNγ receptor influences outcomes of ICB.
Collapse
Affiliation(s)
- Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- These authors contributed equally
- current contact information: School of Dentistry, Taipei Medical University, Taiwan
| | - Junhua Wang
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- These authors contributed equally
| | - Emily C. Wilson
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Coulson P. Rich
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Aaron Rogers
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Zongzhong Tong
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Evelyn DeGroot
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y.N. Vashisht Gopal
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - H. Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey
| | - Joshua K.H. Tay
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Kenneth M. Boucher
- Cancer Biostatistics Shared Resource, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Juan M. Oviedo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Sheri L. Holmen
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Roger K. Wolff
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Allie H. Grossmann
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- Lead contact
| |
Collapse
|
15
|
Wong CW, Huang YY, Hurlstone A. The role of IFN-γ-signalling in response to immune checkpoint blockade therapy. Essays Biochem 2023; 67:991-1002. [PMID: 37503572 PMCID: PMC10539948 DOI: 10.1042/ebc20230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Treatment with immune checkpoint inhibitors, widely known as immune checkpoint blockade therapy (ICBT), is now the fourth pillar in cancer treatment, offering the chance of durable remission for patients with advanced disease. However, ICBT fails to induce objective responses in most cancer patients with still others progressing after an initial response. It is necessary, therefore, to elucidate the primary and acquired resistance mechanisms to ICBT to improve its efficacy. Here, we highlight the paradoxical role of the cytokine interferon-γ (IFN-γ) in ICBT response: on the one hand induction of IFN-γ signalling in the tumour microenvironment correlates with good ICBT response as it drives the cellular immune responses required for tumour destruction; nonetheless, IFN-γ signalling is implicated in ICBT acquired resistance. We address the negative feedback and immunoregulatory effects of IFN-γ signalling that promote immune evasion and resistance to ICBT and discuss how these can be targeted pharmacologically to restore sensitivity or circumvent resistance.
Collapse
Affiliation(s)
- Chun Wai Wong
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Yang Yu Huang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Adam Hurlstone
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
16
|
Zou T, Zhou M, Gupta A, Zhuang P, Fishbein AR, Wei HY, Zhang Z, Cherniack AD, Meyerson M. XRN1 deletion induces PKR-dependent cell lethality in interferon-activated cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551488. [PMID: 37577567 PMCID: PMC10418227 DOI: 10.1101/2023.08.01.551488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Emerging data suggest that induction of viral mimicry responses through activation of double-stranded RNA (dsRNA) sensors in cancer cells is a promising therapeutic strategy. One approach to induce viral mimicry is to target molecular regulators of dsRNA sensing pathways. Here, we show that the exoribonuclease XRN1 is a negative regulator of the dsRNA sensor protein kinase R (PKR) in cancer cells with high interferon-stimulated gene (ISG) expression. XRN1 deletion causes PKR activation and consequent cancer cell lethality. Disruption of interferon signaling with the JAK1/2 inhibitor ruxolitinib can decrease cellular PKR levels and rescue sensitivity to XRN1 deletion. Conversely, interferon-β stimulation can increase PKR levels and induce sensitivity to XRN1 inactivation. Lastly, XRN1 deletion causes accumulation of endogenous complementary sense/anti-sense RNAs, which may represent candidate PKR ligands. Our data demonstrate how XRN1 regulates PKR and nominate XRN1 as a potential therapeutic target in cancer cells with an activated interferon cell state.
Collapse
Affiliation(s)
- Tao Zou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Meng Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Akansha Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Patrick Zhuang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Alyssa R. Fishbein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Hope Y. Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Zhouwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Andrew D. Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Jani S, Church CD, Nghiem P. Insights into anti-tumor immunity via the polyomavirus shared across human Merkel cell carcinomas. Front Immunol 2023; 14:1172913. [PMID: 37287968 PMCID: PMC10242112 DOI: 10.3389/fimmu.2023.1172913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Understanding and augmenting cancer-specific immunity is impeded by the fact that most tumors are driven by patient-specific mutations that encode unique antigenic epitopes. The shared antigens in virus-driven tumors can help overcome this limitation. Merkel cell carcinoma (MCC) is a particularly interesting tumor immunity model because (1) 80% of cases are driven by Merkel cell polyomavirus (MCPyV) oncoproteins that must be continually expressed for tumor survival; (2) MCPyV oncoproteins are only ~400 amino acids in length and are essentially invariant between tumors; (3) MCPyV-specific T cell responses are robust and strongly linked to patient outcomes; (4) anti-MCPyV antibodies reliably increase with MCC recurrence, forming the basis of a standard clinical surveillance test; and (5) MCC has one of the highest response rates to PD-1 pathway blockade among all solid cancers. Leveraging these well-defined viral oncoproteins, a set of tools that includes over 20 peptide-MHC class I tetramers has been developed to facilitate the study of anti-tumor immunity across MCC patients. Additionally, the highly immunogenic nature of MCPyV oncoproteins forces MCC tumors to develop robust immune evasion mechanisms to survive. Indeed, several immune evasion mechanisms are active in MCC, including transcriptional downregulation of MHC expression by tumor cells and upregulation of inhibitory molecules including PD-L1 and immunosuppressive cytokines. About half of patients with advanced MCC do not persistently benefit from PD-1 pathway blockade. Herein, we (1) summarize the lessons learned from studying the anti-tumor T cell response to virus-positive MCC; (2) review immune evasion mechanisms in MCC; (3) review mechanisms of resistance to immune-based therapies in MCC and other cancers; and (4) discuss how recently developed tools can be used to address open questions in cancer immunotherapy. We believe detailed investigation of this model cancer will provide insight into tumor immunity that will likely also be applicable to more common cancers without shared tumor antigens.
Collapse
Affiliation(s)
- Saumya Jani
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Candice D. Church
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Paul Nghiem
- Department of Medicine, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|