1
|
Ahmed MA, Campbell BJ. Genome-resolved adaptation strategies of Rhodobacterales to changing conditions in the Chesapeake and Delaware Bays. Appl Environ Microbiol 2025; 91:e0235724. [PMID: 39772877 PMCID: PMC11837527 DOI: 10.1128/aem.02357-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
The abundant and metabolically versatile aquatic bacterial order, Rhodobacterales, influences marine biogeochemical cycles. We assessed Rhodobacterales metagenome-assembled genome (MAG) abundance, estimated growth rates, and potential and expressed functions in the Chesapeake and Delaware Bays, two important US estuaries. Phylogenomics of draft and draft/closed Rhodobacterales genomes from this study and others placed 46 nearly complete MAGs from these bays into 11 genera, many were not well characterized. Their abundances varied between the bays and were influenced by temperature, salinity, and silicate and phosphate concentrations. Rhodobacterales genera possessed unique and shared genes for transporters, photoheterotrophy, complex carbon degradation, nitrogen, and sulfur metabolism reflecting their seasonal differences in abundance and activity. Planktomarina genomospecies were more ubiquitous than the more niche specialists, HIMB11, CPC320, LFER01, and MED-G52. Their estimated growth rates were correlated to various factors including phosphate and silicate concentrations, cell density, and light. Metatranscriptomic analysis of four abundant genomospecies commonly revealed that aerobic anoxygenic photoheterotrophy-associated transcripts were highly abundant at night. These Rhodobacterales also differentially expressed genes for CO oxidation and nutrient transport and use between different environmental conditions. Phosphate concentrations and light penetration in the Chesapeake Bay likely contributed to higher estimated growth rates of HIMB11 and LFER01, respectively, in summer where they maintained higher ribosome concentrations and prevented physiological gene expression constraints by downregulating transporter genes compared to the Delaware Bay. Our study highlights the spatial and temporal shifts in estuarine Rhodobacterales within and between these bays reflected through their abundance, unique metabolisms, estimated growth rates, and activity changes. IMPORTANCE In the complex web of global biogeochemical nutrient cycling, the Rhodobacterales emerge as key players, exerting a profound influence through their abundance and dynamic activity. While previous studies have primarily investigated these organisms within marine ecosystems, this study delves into their roles within estuarine environments using a combination of metagenomic and metatranscriptomic analyses. We uncovered a range of Rhodobacterales genera, from generalists to specialists, each exhibiting distinct abundance patterns and gene expression profiles. This diversity equips them with the capacity to thrive amidst the varying environmental conditions encountered within dynamic estuarine habitats. Crucially, our findings illuminate the adaptable nature of estuarine Rhodobacterales, revealing their various energy production pathways and diverse resource management, especially during phytoplankton or algal blooms. Whether adopting a free-living or particle-attached existence, these organisms demonstrate remarkable flexibility in their metabolic strategies, underscoring their pivotal role in driving ecosystem dynamics within estuarine ecosystems.
Collapse
Affiliation(s)
- Mir Alvee Ahmed
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Barbara J. Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
2
|
Fei C, Booker A, Klass S, Vidyarathna NK, Ahn SH, Mohamed AR, Arshad M, Glibert PM, Heil CA, Martínez Martínez J, Amin SA. Friends and foes: symbiotic and algicidal bacterial influence on Karenia brevis blooms. ISME COMMUNICATIONS 2025; 5:ycae164. [PMID: 39830096 PMCID: PMC11740886 DOI: 10.1093/ismeco/ycae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Harmful Algal Blooms (HABs) of the toxigenic dinoflagellate Karenia brevis (KB) are pivotal in structuring the ecosystem of the Gulf of Mexico (GoM), decimating coastal ecology, local economies, and human health. Bacterial communities associated with toxigenic phytoplankton species play an important role in influencing toxin production in the laboratory, supplying essential factors to phytoplankton and even killing blooming species. However, our knowledge of the prevalence of these mechanisms during HAB events is limited, especially for KB blooms. Here, we introduced native microbial communities from the GoM, collected during two phases of a Karenia bloom, into KB laboratory cultures. Using bacterial isolation, physiological experiments, and shotgun metagenomic sequencing, we identified both putative enhancers and mitigators of KB blooms. Metagenome-assembled genomes from the Roseobacter clade showed strong correlations with KB populations during HABs, akin to symbionts. A bacterial isolate from this group of metagenome-assembled genomes, Mameliella alba, alleviated vitamin limitations of KB by providing it with vitamins B1, B7 and B12. Conversely, bacterial isolates belonging to Bacteroidetes and Gammaproteobacteria, Croceibacter atlanticus, and Pseudoalteromonas spongiae, respectively, exhibited strong algicidal properties against KB. We identified a serine protease homolog in P. spongiae that putatively drives the algicidal activity in this isolate. While the algicidal mechanism in C. atlanticus is unknown, we demonstrated the efficiency of C. atlanticus to mitigate KB growth in blooms from the GoM. Our results highlight the importance of specific bacteria in influencing the dynamics of HABs and suggest strategies for future HAB management.
Collapse
Affiliation(s)
- Cong Fei
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Anne Booker
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, United States
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
| | - Sarah Klass
- Red Tide Institute, Mote Marine Laboratory and Aquarium, Sarasota, FL 34236, United States
| | - Nayani K Vidyarathna
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
| | - So Hyun Ahn
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Muhammad Arshad
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Patricia M Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
| | - Cynthia A Heil
- Red Tide Institute, Mote Marine Laboratory and Aquarium, Sarasota, FL 34236, United States
| | - Joaquín Martínez Martínez
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, United States
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, United States
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
- Mubadala Arabian Center for Climate and Environmental Sciences Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
3
|
West NJ, Landa M, Obernosterer I. Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean. Microbiologyopen 2024; 13:e1428. [PMID: 39119822 PMCID: PMC11310772 DOI: 10.1002/mbo3.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Nyree J. West
- CNRS FR3724, Observatoire Océanologique de Banyuls (OOB)Sorbonne UniversitéBanyuls sur merFrance
| | - Marine Landa
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| |
Collapse
|
4
|
Wang J, Curson ARJ, Zhou S, Carrión O, Liu J, Vieira AR, Walsham KS, Monaco S, Li CY, Dong QY, Wang Y, Rivera PPL, Wang XD, Zhang M, Hanwell L, Wallace M, Zhu XY, Leão PN, Lea-Smith DJ, Zhang YZ, Zhang XH, Todd JD. Alternative dimethylsulfoniopropionate biosynthesis enzymes in diverse and abundant microorganisms. Nat Microbiol 2024; 9:1979-1992. [PMID: 38862603 PMCID: PMC11306096 DOI: 10.1038/s41564-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.
Collapse
Affiliation(s)
- Jinyan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Shun Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ornella Carrión
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ji Liu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ana R Vieira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Keanu S Walsham
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Chun-Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qing-Yu Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peter Paolo L Rivera
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Xiao-Di Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Libby Hanwell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China.
| | - Jonathan D Todd
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
5
|
Jackson R, Gabric A. Climate Change Impacts on the Marine Cycling of Biogenic Sulfur: A Review. Microorganisms 2022; 10:1581. [PMID: 36013999 PMCID: PMC9412504 DOI: 10.3390/microorganisms10081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
A key component of the marine sulfur cycle is the climate-active gas dimethylsulfide (DMS), which is synthesized by a range of organisms from phytoplankton to corals, and accounts for up to 80% of global biogenic sulfur emissions. The DMS cycle starts with the intracellular synthesis of the non-gaseous precursor dimethylsulfoniopropionate (DMSP), which is released to the water column by various food web processes such as zooplankton grazing. This dissolved DMSP pool is rapidly turned over by microbially mediated conversion using two known pathways: demethylation (releasing methanethiol) and cleavage (producing DMS). Some of the formed DMS is ventilated to the atmosphere, where it undergoes rapid oxidation and contributes to the formation of sulfate aerosols, with the potential to affect cloud microphysics, and thus the regional climate. The marine phase cycling of DMS is complex, however, as heterotrophs also contribute to the consumption of the newly formed dissolved DMS. Interestingly, due to microbial consumption and other water column sinks such as photolysis, the amount of DMS that enters the atmosphere is currently thought to be a relatively minor fraction of the total amount cycled through the marine food web-less than 10%. These microbial processes are mediated by water column temperature, but the response of marine microbial assemblages to ocean warming is poorly characterized, although bacterial degradation appears to increase with an increase in temperature. This review will focus on the potential impact of climate change on the key microbially mediated processes in the marine cycling of DMS. It is likely that the impact will vary across different biogeographical regions from polar to tropical. For example, in the rapidly warming polar oceans, microbial communities associated with the DMS cycle will likely change dramatically during the 21st century with the decline in sea ice. At lower latitudes, where corals form an important source of DMS (P), shifts in the microbiome composition have been observed during thermal stress with the potential to alter the DMS cycle.
Collapse
Affiliation(s)
- Rebecca Jackson
- Coasts and Ocean Research, Oceans and Atmosphere, CSIRO, Canberra, ACT 2601, Australia
| | - Albert Gabric
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
6
|
O’Brien J, McParland EL, Bramucci AR, Ostrowski M, Siboni N, Ingleton T, Brown MV, Levine NM, Laverock B, Petrou K, Seymour J. The Microbiological Drivers of Temporally Dynamic Dimethylsulfoniopropionate Cycling Processes in Australian Coastal Shelf Waters. Front Microbiol 2022; 13:894026. [PMID: 35783424 PMCID: PMC9240709 DOI: 10.3389/fmicb.2022.894026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/20/2022] [Indexed: 01/04/2023] Open
Abstract
The organic sulfur compounds dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) play major roles in the marine microbial food web and have substantial climatic importance as sources and sinks of dimethyl sulfide (DMS). Seasonal shifts in the abundance and diversity of the phytoplankton and bacteria that cycle DMSP are likely to impact marine DMS (O) (P) concentrations, but the dynamic nature of these microbial interactions is still poorly resolved. Here, we examined the relationships between microbial community dynamics with DMS (O) (P) concentrations during a 2-year oceanographic time series conducted on the east Australian coast. Heterogenous temporal patterns were apparent in chlorophyll a (chl a) and DMSP concentrations, but the relationship between these parameters varied over time, suggesting the phytoplankton and bacterial community composition were affecting the net DMSP concentrations through differential DMSP production and degradation. Significant increases in DMSP were regularly measured in spring blooms dominated by predicted high DMSP-producing lineages of phytoplankton (Heterocapsa, Prorocentrum, Alexandrium, and Micromonas), while spring blooms that were dominated by predicted low DMSP-producing phytoplankton (Thalassiosira) demonstrated negligible increases in DMSP concentrations. During elevated DMSP concentrations, a significant increase in the relative abundance of the key copiotrophic bacterial lineage Rhodobacterales was accompanied by a three-fold increase in the gene, encoding the first step of DMSP demethylation (dmdA). Significant temporal shifts in DMS concentrations were measured and were significantly correlated with both fractions (0.2-2 μm and >2 μm) of microbial DMSP lyase activity. Seasonal increases of the bacterial DMSP biosynthesis gene (dsyB) and the bacterial DMS oxidation gene (tmm) occurred during the spring-summer and coincided with peaks in DMSP and DMSO concentration, respectively. These findings, along with significant positive relationships between dsyB gene abundance and DMSP, and tmm gene abundance with DMSO, reinforce the significant role planktonic bacteria play in producing DMSP and DMSO in ocean surface waters. Our results highlight the highly dynamic nature and myriad of microbial interactions that govern sulfur cycling in coastal shelf waters and further underpin the importance of microbial ecology in mediating important marine biogeochemical processes.
Collapse
Affiliation(s)
- James O’Brien
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Erin L. McParland
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Anna R. Bramucci
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy Ingleton
- Water, Wetlands and Coastal Science, NSW Department of Planning, Industry and Environment, Lidcombe, NSW, Australia
| | - Mark V. Brown
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Naomi M. Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Bonnie Laverock
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Katherina Petrou
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|