1
|
Greene LK, Andriatiavina T, Foss ED, Andriantsalohimisantatra A, Rivoharison TV, Rakotoarison F, Randriamboavonjy T, Yoder AD, Ratsoavina F, Blanco MB. The gut microbiome of Madagascar's lemurs from forest fragments in the central highlands. Primates 2025; 66:313-325. [PMID: 39976822 DOI: 10.1007/s10329-025-01182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/03/2025] [Indexed: 04/23/2025]
Abstract
The gut microbiome is now understood to play essential roles in host nutrition and health and has become a dominant research focus in primatology. Over the past decade, research has clarified the evolutionary traits that govern gut microbiome structure across species and the ecological traits that further influence consortia within them. Nevertheless, we stand to gain resolution by sampling hosts in understudied habitats. We focus on the lemurs of Madagascar's central highlands. Madagascar's highlands have a deep history as heterogeneous grassland-forest mosaics, but due to significant anthropogenic modification, have long been overlooked as lemur habitat. We collected fecal samples from Verreaux's sifakas (Propithecus verreauxi), common brown lemurs (Eulemur fulvus), and Goodman's mouse lemurs (Microcebus lehilahytsara) inhabiting two protected areas in the highlands and used amplicon sequencing to determine gut microbiome diversity and membership. As expected, the lemurs harbored distinct gut consortia tuned to their feeding strategies. Mouse lemurs harbored abundant Bifidobacterium and Alloprevotella that are implicated in gum metabolism, sifakas harbored abundant Lachnospiraceae that are implicated in leaf-fiber metabolism, and brown lemurs harbored diverse consortia with abundant WCBH1-41 that could be associated with frugivory in harsh seasons and habitats. Within brown lemurs, a suite of bacteria varied between seed-packed and leaf-packed feces, a proxy for dietary intakes, collected from the same group over days. Our results underscore the evolutionary and ecological factors that govern primate gut microbiomes. More broadly, we showcase the forests of Madagascar's central highlands as rich habitat for future research of lemur ecology and evolution.
Collapse
Affiliation(s)
- Lydia K Greene
- Department of Biology, Duke University, Durham, NC, USA.
- Duke Lemur Center, Duke University, Durham, NC, USA.
| | - Tsinjo Andriatiavina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Elissa D Foss
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | | | | | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Fanomezana Ratsoavina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC, USA
- Duke Lemur Center, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Donohue ME, Lamb A, Absangba AE, Noromalala E, Weisenbeck DR, Stumpf RM, Wright PC. Why Didn't the Sifaka Cross the Road? Divergence of Propithecus edwardsi Gut Microbiomes Across Geographic Barriers in Ranomafana National Park, Madagascar. Am J Primatol 2025; 87:e23732. [PMID: 39905243 PMCID: PMC11794673 DOI: 10.1002/ajp.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
This study uses a biogeographic framework to identify patterns of gut microbiome divergence in an endangered lemur species endemic to Madagascar's southeastern rainforests, the Milne-Edwards's sifaka (Propithecus edwardsi). Specifically, we tested the effects of (1) geographic barriers, (2) habitat disturbance, and (3) geographic distance on gut microbiome alpha and beta diversity. We selected 10 social groups from 4 sites in Ranomafana National Park with varied histories of selective logging. Sites were spaced between 4 and 17 km apart falling on either side of two parallel barriers to animal movement: the Namorona River and the RN25 highway. Using 16S rRNA metabarcoding, we found the greatest beta diversity differentiation to occur between social groups, with significant divisions on opposite sides of geographic barriers (road/river). Habitat disturbance had the most significant effect on alpha diversity, though, contrary to many other studies, disturbance was associated with higher microbial species richness. Without biomedical context, it is unclear whether microbiome differences observed herein are neutral, adaptive, or maladaptive. However, microbiome divergence associated with the road/river may be a symptom of reduced host gene flow, warranting further investigation and perhaps conservation action (e.g., construction of wildlife bridges). Finally, this work demonstrates that significant microbiome variation can accrue over small sampling areas, lending new insight into host-microbe-environmental interactions.
Collapse
Affiliation(s)
- Mariah E. Donohue
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Biological SciencesBinghamton UniversityBinghamtonNew YorkUSA
| | - Alicia Lamb
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNew YorkUSA
- The Wild CenterTupper LakeNew YorkUSA
| | - Abigail E. Absangba
- Department of AnthropologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
| | - Eliette Noromalala
- Anthropobiologie et Développement DurableUniversité AntananarivoAntananarivoMarylandUSA
- Department of AnthropologyThe University of Texas at AustinAustinTexasUSA
| | | | - Rebecca M. Stumpf
- Department of AnthropologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Patricia C. Wright
- Centre ValBio Research StationFianarantsoaMarylandUSA
- Department of AnthropologyStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
3
|
Su C, Xie T, Jiang L, Wang Y, Wang Y, Nie R, Zhao Y, He B, Ma J, Yang Q, Hao J. Host genetics and larval host plant modulate microbiome structure and evolution underlying the intimate insect-microbe-plant interactions in Parnassius species on the Qinghai-Tibet Plateau. Ecol Evol 2024; 14:e11218. [PMID: 38606343 PMCID: PMC11007261 DOI: 10.1002/ece3.11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Insects harbor a remarkable diversity of gut microbiomes critical for host survival, health, and fitness, but the mechanism of this structured symbiotic community remains poorly known, especially for the insect group consisting of many closely related species that inhabit the Qinghai-Tibet Plateau. Here, we firstly analyzed population-level 16S rRNA microbial dataset, comprising 11 Parnassius species covering 5 subgenera, from 14 populations mostly sampled in mountainous regions across northwestern-to-southeastern China, and meanwhile clarified the relative importance of multiple factors on gut microbial community structure and evolution. Our findings indicated that both host genetics and larval host plant modulated gut microbial diversity and community structure. Moreover, the effect analysis of host genetics and larval diet on gut microbiomes showed that host genetics played a critical role in governing the gut microbial beta diversity and the symbiotic community structure, while larval host plant remarkably influenced the functional evolution of gut microbiomes. These findings of the intimate insect-microbe-plant interactions jointly provide some new insights into the correlation among the host genetic background, larval host plant, the structure and evolution of gut microbiome, as well as the mechanisms of high-altitude adaptation in closely related species of this alpine butterfly group.
Collapse
Affiliation(s)
- Chengyong Su
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Tingting Xie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Lijun Jiang
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Yunliang Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ying Wang
- College of Life SciencesAnhui Normal UniversityWuhuChina
- College of Physical EducationAnhui Normal UniversityWuhuChina
| | - Ruie Nie
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Youjie Zhao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Bo He
- College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Junye Ma
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
| | - Qun Yang
- Key Laboratory of Palaeobiology and Petroleum Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
- Nanjing CollegeUniversity of Chinese Academy of SciencesNanjingChina
| | - Jiasheng Hao
- College of Life SciencesAnhui Normal UniversityWuhuChina
| |
Collapse
|
4
|
Donohue ME, Hert ZL, Karrick CE, Rowe AK, Wright PC, Randriamanandaza LJ, Zakamanana F, Nomenjanahary ES, Everson KM, Weisrock DW. Lemur Gut Microeukaryotic Community Variation Is Not Associated with Host Phylogeny, Diet, or Habitat. MICROBIAL ECOLOGY 2023; 86:2149-2160. [PMID: 37133496 DOI: 10.1007/s00248-023-02233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Identifying the major forces driving variation in gut microbiomes enhances our understanding of how and why symbioses between hosts and microbes evolved. Gut prokaryotic community variation is often closely associated with host evolutionary and ecological variables. Whether these same factors drive variation in other microbial taxa occupying the animal gut remains largely untested. Here, we present a one-to-one comparison of gut prokaryotic (16S rRNA metabarcoding) and microeukaryotic (18S rRNA metabarcoding) community patterning among 12 species of wild lemurs. Lemurs were sampled from dry forests and rainforests of southeastern Madagascar and display a range of phylogenetic and ecological niche diversity. We found that while lemur gut prokaryotic community diversity and composition vary with host taxonomy, diet, and habitat, gut microeukaryotic communities have no detectable association with any of these factors. We conclude that gut microeukaryotic community composition is largely random, while gut prokaryotic communities are conserved among host species. It is likely that a greater proportion of gut microeukaryotic communities comprise taxa with commensal, transient, and/or parasitic symbioses compared with gut prokaryotes, many of which form long-term relationships with the host and perform important biological functions. Our study highlights the importance of greater specificity in microbiome research; the gut microbiome contains many "omes" (e.g., prokaryome, eukaryome), each comprising different microbial taxa shaped by unique selective pressures.
Collapse
Affiliation(s)
- Mariah E Donohue
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA.
| | - Zoe L Hert
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carly E Karrick
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Amanda K Rowe
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Patricia C Wright
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Centre ValBio Research Station, Ranomafana, MD, USA
| | | | | | | | - Kathryn M Everson
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, 101 T.H.M. Building, Lexington, KY, 40506, USA
| |
Collapse
|
5
|
Greene LK, Andriambeloson JB, Rasoanaivo HA, Yoder AD, Blanco MB. Variation in gut microbiome structure across the annual hibernation cycle in a wild primate. FEMS Microbiol Ecol 2022; 98:6604834. [PMID: 35679092 DOI: 10.1093/femsec/fiac070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiome can mediate host metabolism, including facilitating energy-saving strategies like hibernation. The dwarf lemurs of Madagascar (Cheirogaleus spp.) are the only obligate hibernators among primates. They also hibernate in the subtropics, and unlike temperate hibernators, fatten by converting fruit sugars to lipid deposits, torpor at relatively warm temperatures, and forage for a generalized diet after emergence. Despite these ecological differences, we might expect hibernation to shape the gut microbiome in similar ways across mammals. We, therefore, compare gut microbiome profiles, determined by amplicon sequencing of rectal swabs, in wild furry-eared dwarf lemurs (C. crossleyi) during fattening, hibernation, and after emergence. The dwarf lemurs exhibited reduced gut microbial diversity during fattening, intermediate diversity and increased community homogenization during hibernation, and greatest diversity after emergence. The Mycoplasma genus was enriched during fattening, whereas the Aerococcaceae and Actinomycetaceae families, and not Akkermansia, bloomed during hibernation. As expected, the dwarf lemurs showed seasonal reconfigurations of the gut microbiome; however, the patterns of microbial diversity diverged from temperate hibernators, and better resembled the shifts associated with dietary fruits and sugars in primates and model organisms. Our results thus highlight the potential for dwarf lemurs to probe microbiome-mediated metabolism in primates under contrasting conditions.
Collapse
Affiliation(s)
- Lydia K Greene
- The Duke Lemur Center, 3705 Erwin Road, Durham, NC 27705, United States.,Department of Biology, Duke University, Durham, NC 27708, United States
| | - Jean-Basile Andriambeloson
- Department of Zoology and Animal Biodiversity, Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | - Hoby A Rasoanaivo
- Department of Science and Veterinary Medicine, Faculty of Medicine, University of Antananarivo, Antananarivo, Madagascar
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - Marina B Blanco
- The Duke Lemur Center, 3705 Erwin Road, Durham, NC 27705, United States.,Department of Biology, Duke University, Durham, NC 27708, United States
| |
Collapse
|