1
|
Ban S, Shen Y, Cheng W, Chen B, Zhang Y, Nie H, Wang S, Xu Y, Wu Q. Community dynamics and assembly is driven by environmental microbiota mediated by spatiotemporal distribution: The case of Daqu fermentation. Int J Food Microbiol 2025; 426:110933. [PMID: 39405799 DOI: 10.1016/j.ijfoodmicro.2024.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
In almost all environments, microbial interaction is shaped by differences in environmental microbial transport, resulting in synergistic or antagonistic effects among community members. Unfortunately, the current understanding of how environmental microbiota affect spontaneous fermentation is very limited. Here, we selected Daqu workshops with different usage times (named X (60 years), Y (10 years), and Z (0 year)) as research model. The microbial contribution of raw material and environments to the microbiota of Daqu fermentation among workshops was compared, raw material microbiota contributed more bacterial genera (44.70 %-73.56 %) to the fermentation, and environmental microbiota contributed more fungal genera (10.09 %-99.76 %) to the fermentation. The deterministic assembly ratio and interaction intensity of workshop X were the highest, followed by Y and Z. We analyzed the relationship between environmental microbiota, fermentation microbiota, fermentation characteristics and flavor compounds. Environmental microbiota negatively drove the microbial diversity during fermentation (path coefficient = -1, P = 0.004), and further indirectly affected the community dynamics and assembly (path coefficient = -0.990, P < 0.001). Finally, community dynamics and assembly drove flavor compound diversity (path coefficient = 0.923, P < 0.001), it indicated the positive effect of environmental microbiota on flavor compound diversity. This work will help to understand the relationship between environmental microbiota and fermentation quality, supporting quality improvement of spontaneously fermented food in new workshop.
Collapse
Affiliation(s)
- Shibo Ban
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Shen
- Sichuan Langjiu Group Co., Ltd., Luzhou 610213, China
| | - Wei Cheng
- Sichuan Langjiu Group Co., Ltd., Luzhou 610213, China
| | - Bo Chen
- Sichuan Langjiu Group Co., Ltd., Luzhou 610213, China
| | - Yadong Zhang
- Sichuan Langjiu Group Co., Ltd., Luzhou 610213, China
| | - Hongfang Nie
- Sichuan Langjiu Group Co., Ltd., Luzhou 610213, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Zhang L, Zhang G, Shi Z, He M, Ma D, Liu J. Effects of polypropylene micro(nano)plastics on soil bacterial and fungal community assembly in saline-alkaline wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173890. [PMID: 38885717 DOI: 10.1016/j.scitotenv.2024.173890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Microplastic pollution is a major environmental threat, especially to terrestrial ecosystems. To better understand the effects of microplastics on soil microbiota, the influence of micro- to nano-scale polypropylene plastics was investigated on microbial community diversity, functionality, co-occurrence, assembly, and their interaction with soil-plant using high-throughput sequencing approaches and multivariate analyses. The results showed that polypropylene micro/nano-plastics mainly reduced bacterial diversity, not fungal, and that plastic size had a stronger effect than concentration on the assembly of microbial communities. Nano-plastics decreased the complexity and connectivity of both bacterial and fungal networks compared to micro-plastics. Moreover, bacteria were more sensitive and deterministic to polypropylene micro/nano-plastic stress than fungi, as shown by their different growth rates, guanine-cytosine content, and cell structure. Interestingly, the dominant ecological process for bacteria shifted from stochastic drift to deterministic selection with polypropylene micro/nano-plastic exposure. Furthermore, nano-plastics directly or indirectly disrupted the interactions within intra-microbes and between soil-bacteria-plant by altering soil nutrients and stoichiometry (C:N:P) or plant diversity. Collectively, the results indicate that polypropylene nano-plastics pose more ecological risks to soil microbes and their plant-soil interactions. This study sheds light on the potential ecological consequences of polypropylene micro/nano-plastic pollution in terrestrial ecosystems.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guorui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ziyue Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China..
| | - Dan Ma
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
3
|
King WL, Grandinette EM, Trase O, Rolon ML, Salis HM, Wood H, Bell TH. Autoclaving is at least as effective as gamma irradiation for biotic clearing and intentional microbial recolonization of soil. mSphere 2024; 9:e0047624. [PMID: 38980074 PMCID: PMC11288020 DOI: 10.1128/msphere.00476-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Sterilization is commonly used to remove or reduce the biotic constraints of a soil to allow recolonization by soil-dwelling organisms, with autoclaving and gamma irradiation being the most frequently used approaches. Many studies have characterized sterilization impacts on soil physicochemical properties, with gamma irradiation often described as the preferred approach, despite the lower cost and higher scalability of autoclaving. However, few studies have compared how sterilization techniques impact soil recolonization by microorganisms. Here, we compared how two sterilization approaches (autoclaving; gamma irradiation) and soil washing impacted microbial recolonization of soil from a diverse soil inoculum. Sterilization method had little impact on microbial alpha diversity across recolonized soils. For sterile soil regrowth microcosms, species richness and diversity were significantly reduced by autoclaving relative to gamma irradiation, particularly for fungi. There was no impact of sterilization method on bacterial composition in recolonized soils and minimal impact on fungal composition (P = 0.05). Washing soils had a greater impact on microbial composition than sterilization method, and sterile soil regrowth had negligible impacts on microbial recolonization. These data suggest that sterilization method has no clear impact on microbial recolonization, at least across the soils tested, indicating that soil autoclaving is an appropriate and economical approach for biotically clearing soils.IMPORTANCESterilized soils represent soil-like environments that act as a medium to study microbial colonization dynamics in more "natural" settings relative to artificial culturing environments. Soil sterilization is often carried out by gamma irradiation or autoclaving, which both alter soil properties, but gamma irradiation is thought to be the gentler technique. Gamma irradiation can be cost prohibitive and does not scale well for larger experiments. We sought to examine how soil sterilization technique can impact microbial colonization, and additionally looked at the impact of soil washing which is believed to remove soil toxins that inhibit soil recolonization. We found that both gamma-irradiated and autoclaved soils showed similar colonization patterns when reintroducing microorganisms. Soil washing, relative to sterilization technique, had a greater impact on which microorganisms were able to recolonize the soil. When allowing sterilized soils to regrow (i.e., persisting microorganisms), gamma irradiation performed worse, suggesting that gamma irradiation does not biotically clear soils as well as autoclaving. These data suggest that both sterilization techniques are comparable, and that autoclaving may be more effective at biotically clearing soil.
Collapse
Affiliation(s)
- William L. King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Emily M. Grandinette
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Olivia Trase
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - M. Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Howard M. Salis
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Harlow Wood
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Terrence H. Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Richards SC, King WL, Sutherland JL, Bell TH. Leveraging aquatic-terrestrial interfaces to capture putative habitat generalists. FEMS Microbiol Lett 2024; 371:fnae025. [PMID: 38553956 DOI: 10.1093/femsle/fnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/03/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
Habitat type is a strong determinant of microbial composition. Habitat interfaces, such as the boundary between aquatic and terrestrial systems, present unique combinations of abiotic factors for microorganisms to contend with. Aside from the spillover of certain harmful microorganisms from agricultural soils into water (e.g. fecal coliform bacteria), we know little about the extent of soil-water habitat switching across microbial taxa. In this study, we developed a proof-of-concept system to facilitate the capture of putatively generalist microorganisms that can colonize and persist in both soil and river water. We aimed to examine the phylogenetic breadth of putative habitat switchers and how this varies across different source environments. Microbial composition was primarily driven by recipient environment type, with the strongest phylogenetic signal seen at the order level for river water colonizers. We also identified more microorganisms colonizing river water when soil was collected from a habitat interface (i.e. soil at the side of an intermittently flooded river, compared to soil collected further from water sources), suggesting that environmental interfaces could be important reservoirs of microbial habitat generalists. Continued development of experimental systems that actively capture microorganisms that thrive in divergent habitats could serve as a powerful tool for identifying and assessing the ecological distribution of microbial generalists.
Collapse
Affiliation(s)
- Sarah C Richards
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, United States
- International Agriculture and Development Graduate Program, The Pennsylvania State University, University Park, PA, 16802, United States
| | - William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- School of Biological Sciences, University of Southampton, SO17 1BJ, United Kingdom
| | - Jeremy L Sutherland
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, United States
- International Agriculture and Development Graduate Program, The Pennsylvania State University, University Park, PA, 16802, United States
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
5
|
King WL, Richards SC, Kaminsky LM, Bradley BA, Kaye JP, Bell TH. Leveraging microbiome rediversification for the ecological rescue of soil function. ENVIRONMENTAL MICROBIOME 2023; 18:7. [PMID: 36691096 PMCID: PMC9872425 DOI: 10.1186/s40793-023-00462-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Global biodiversity losses threaten ecosystem services and can impact important functional insurance in a changing world. Microbial diversity and function can become depleted in agricultural systems and attempts to rediversify agricultural soils rely on either targeted microbial introductions or retaining natural lands as biodiversity reservoirs. As many soil functions are provided by a combination of microbial taxa, rather than outsized impacts by single taxa, such functions may benefit more from diverse microbiome additions than additions of individual commercial strains. In this study, we measured the impact of soil microbial diversity loss and rediversification (i.e. rescue) on nitrification by quantifying ammonium and nitrate pools. We manipulated microbial assemblages in two distinct soil types, an agricultural and a forest soil, with a dilution-to-extinction approach and performed a microbiome rediversification experiment by re-introducing microorganisms lost from the dilution. A microbiome water control was included to act as a reference point. We assessed disruption and potential restoration of (1) nitrification, (2) bacterial and fungal composition through 16S rRNA gene and fungal ITS amplicon sequencing and (3) functional genes through shotgun metagenomic sequencing on a subset of samples. RESULTS Disruption of nitrification corresponded with diversity loss, but nitrification was successfully rescued in the rediversification experiment when high diversity inocula were introduced. Bacterial composition clustered into groups based on high and low diversity inocula. Metagenomic data showed that genes responsible for the conversion of nitrite to nitrate and taxa associated with nitrogen metabolism were absent in the low diversity inocula microcosms but were rescued with high diversity introductions. CONCLUSIONS In contrast to some previous work, our data suggest that soil functions can be rescued by diverse microbiome additions, but that the concentration of the microbial inoculum is important. By understanding how microbial rediversification impacts soil microbiome performance, we can further our toolkit for microbial management in human-controlled systems in order to restore depleted microbial functions.
Collapse
Affiliation(s)
- William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sarah C Richards
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in International Agriculture and Development, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Laura M Kaminsky
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
| | - Brosi A Bradley
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jason P Kaye
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA.
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Intercollege Graduate Degree Program in International Agriculture and Development, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|