1
|
Speer KA, Víquez‐R L, Frick WF, Ibarra A, Simmons NB, Dittmar K, Calderón RS, Preciado R, Medellín R, Tschapka M, Sommer S, Perkins SL. Comparative Community Ecology Reveals Conserved Ectoparasite Microbiomes Amidst Variable Host and Environment Microbiomes. Ecol Evol 2025; 15:e71120. [PMID: 40177692 PMCID: PMC11962207 DOI: 10.1002/ece3.71120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
The microbiome-the community of microorganisms that is associated with an individual animal-has been an important driver of insect biodiversity globally, enabling insects to specialize in narrow, nutrient-deficient diets. The importance of maternally inherited, obligate bacterial endosymbionts in provisioning nutrients missing from these narrow dietary niches has been well studied in insects. However, we know comparatively little about the processes that dictate the composition of non-maternally inherited bacteria in insect microbiomes, despite the importance of these bacteria in insect health, fitness, and vector competence. Here, we used two species of obligate insect ectoparasites of bats, the bat flies (Streblidae) Trichobius sphaeronotus and Nycterophilia coxata, to examine whether the microbiome, beyond obligate bacterial endosymbionts, is conserved or variable across geographic space, between ectoparasite species, or covaries with the external microbiome of their bat hosts or the cave environment. Our results indicate that ectoparasite microbiomes are highly conserved and specific to ectoparasite species, despite these species feeding on the blood of the same bat individuals in some cases. In contrast, we found high geographic variation in the fur microbiome of host bats and that the bat fur microbiome mimics the cave microbiomes. This research suggests that there is a constraint on blood-feeding insect ectoparasites to maintain a specific microbiome distinct from their host and the environment, potentially to meet their nutritional needs. Given that many of these bacteria are not known to be maternally inherited, this research lays the foundation for future examinations of how blood-feeding arthropods acquire and maintain bacteria in their microbiomes.
Collapse
Affiliation(s)
- Kelly A. Speer
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Luis Víquez‐R
- Department of BiologyBucknell UniversityLewisburgPennsylvaniaUSA
- Institute of Evolutionary Ecology and Conservation GeneticsUniversität UlmUlmGermany
| | - Winifred F. Frick
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
- Bat Conservation InternationalAustinTexasUSA
| | - Ana Ibarra
- Bat Conservation InternationalAustinTexasUSA
- Laboratorio de Ecología y Conservación de Vertebrados TerrestresUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Nancy B. Simmons
- Department of MammalogyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | | | | | - Raisa Preciado
- Facultad Interdisciplinaria de Ciencias Biológicas y de SaludUniversidad de SonoraHermosilloSonoraMexico
| | - Rodrigo Medellín
- Laboratorio de Ecología y Conservación de Vertebrados TerrestresUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation GeneticsUniversität UlmUlmGermany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation GeneticsUniversität UlmUlmGermany
| | - Susan L. Perkins
- City College of New YorkCity University of New YorkNew YorkNew YorkUSA
| |
Collapse
|
2
|
Gao H, Song Y, Li M, Gao M, Peng Z, Pan H, Qi J, Chen S, Liu Y, Wang Y, Jin C, Wei G, Jiao S. Nutrient Availability Shapes the Resistance of Soil Bacterial Community and Functions to Disturbances in Desert Ecosystem. Environ Microbiol 2025; 27:e70081. [PMID: 40077807 DOI: 10.1111/1462-2920.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Climate change has exposed desert ecosystems to frequent extreme disturbances, including wet-dry cycles and freeze-thaw events, which accelerate desertification on a global scale. The limited nutrient availability characteristic of these ecosystems may constrain microbial survival and growth, making them more vulnerable to environmental perturbations and stressors. However, how nutrient availability modulates the stability of soil ecological communities and functions in desert ecosystems remains poorly understood. In this study, we examined how nutrient addition, applied either before or after disturbances, affects the resistance of bacterial communities and multifunctionality to drought and freeze events in desert ecosystems. Our findings revealed that freeze-thaw events, rather than drought, significantly reduced bacterial diversity, with all disturbances altering the community structure. Pre-disturbance nutrient addition notably improved the resistance of soil bacterial diversity and community composition to disturbances, which played a critical role in maintaining multifunctionality in desert ecosystems. This enhanced bacterial resistance was strongly associated with increased bacterial network complexity and the enrichment of disturbance-tolerant taxa. Our results highlight the pivotal role of nutrient availability in stabilising soil bacterial communities and multifunctionality under extreme climatic conditions in desert ecosystems. These findings offer valuable insights and practical strategies for the ecological protection and management of desertification.
Collapse
Affiliation(s)
- Hang Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yuan Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Mingyu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Min Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ziheng Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiejun Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shi Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yu Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chujie Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuo Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Cruz GLT, Winck GR, D'Andrea PS, Krempser E, Vidal MM, Andreazzi CS. Integrating databases for spatial analysis of parasite-host associations and the novel Brazilian dataset. Sci Data 2023; 10:757. [PMID: 37919263 PMCID: PMC10622529 DOI: 10.1038/s41597-023-02636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
Incomplete information on parasites, their associated hosts, and their precise geographical location hampers the ability to predict disease emergence in Brazil, a continental-sized country characterised by significant regional disparities. Here, we demonstrate how the NCBI Nucleotide and GBIF databases can be used as complementary databases to study spatially georeferenced parasite-host associations. We also provide a comprehensive dataset of parasites associated with mammal species that occur in Brazil, the Brazilian Mammal Parasite Occurrence Data (BMPO). This dataset integrates wild mammal species' morphological and life-history traits, zoonotic parasite status, and zoonotic microparasite transmission modes. Through meta-networks, comprising interconnected host species linked by shared zoonotic microparasites, we elucidate patterns of zoonotic microparasite dissemination. This approach contributes to wild animal and zoonoses surveillance, identifying and targeting host species accountable for disproportionate levels of parasite sharing within distinct biomes. Moreover, our novel dataset contributes to the refinement of models concerning disease emergence and parasite distribution among host species.
Collapse
Affiliation(s)
- Gabriella L T Cruz
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Programa de Pós-graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Pró-Reitoria de Pós-Graduação, Pesquisa e Inovação (PROPGPI), Universidade Federal do Estado do Rio de Janeiro (Unirio), Rio de Janeiro, RJ, Brazil
| | - Gisele R Winck
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Paulo S D'Andrea
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Eduardo Krempser
- Plataforma Institucional Biodiversidade e Saúde Silvestre (PIBSS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Mariana M Vidal
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Cecilia S Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.
- International Platform for Science, Technology and Innovation in Health (PICTIS), Ílhavo, Portugal.
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
André MR, Ikeda P, Lee DAB, do Amaral RB, Carvalho LAL, Pinheiro DG, Torres JM, de Mello VVC, Rice GK, Cer RZ, Lourenço EC, Oliveira CE, Herrera HM, Barros-Battesti DM, Machado RZ, Bishop-Lilly KA, Dalgard CL, Dumler JS. Characterization of the bacterial microbiome of non-hematophagous bats and associated ectoparasites from Brazil. Front Microbiol 2023; 14:1261156. [PMID: 37928691 PMCID: PMC10620512 DOI: 10.3389/fmicb.2023.1261156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Bats, along with their ectoparasites, harbor a wide diversity of symbiotic and potential pathogenic bacteria. Despite the enormous diversity of bats (181 species), few studies aimed to investigate the bacterial microbiome of Brazilian chiropterans and associated ectoparasites. This study aimed to characterize the bacterial microbiome of non-hematophagous bats and associated Streblidae flies and Macronyssidae and Spinturnicidae mites in the state of Mato Grosso do Sul, midwestern Brazil. Methods Oral and rectal swabs were collected from 30 bats (Artibeus lituratus [n = 13], Artibeus planirostris [n = 9], Eptesicus furinalis [n = 5], Carollia perspicillata [n = 2], and Platyrrhinus lineatus [n = 1]). In addition, a total of 58 mites (15 Macronyssidae and 43 Spinturnicidae) and 48 Streblidae bat flies were collected from the captured bats. After DNA extraction and purification, each sample's bacterial composition was analyzed with metagenomic sequencing. Results The microbiome composition of both oral and rectal bat swab samples showed that Gammaproteobacteria was the most abundant bacterial class. Spiroplasma, Wolbachia and Bartonella represented the most abundant genera in Streblidae flies. While Wolbachia (Alphaproteobacteria) was the most abundant genus found in Spinturnicidae, Arsenophonus (Gammaproteobacteria) was found in high abundance in Macronyssidae mites. In addition to characterizing the microbiome of each sample at the class and genus taxonomic levels, we identified medically significant bacteria able to infect both animals and humans in oral (Streptococcus and Anaplasma) and rectal swabs (Enterobacter, Klebsiella, Escherichia, Enterococcus, Streptococcus), Macronyssidae (Anaplasma, Bartonella, Ehrlichia) and Spinturnicidae (Anaplasma, Bartonella) mites as well as Streblidae flies (Spiroplasma, Bartonella). Discussion and conclusion Besides expanding the knowledge on the bacterial microbiome of non-hematophagous bats and Streblidae flies from Brazil, the present work showed, for the first time, the bacterial community of bat-associated Macronyssidae and Spinturnicidae mites.
Collapse
Affiliation(s)
- Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Priscila Ikeda
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Daniel Antônio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Renan Bressianini do Amaral
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lucas Amoroso Lopes Carvalho
- Departamento de Biotecnologia Ambiental e Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Biotecnologia Ambiental e Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Jaire Marinho Torres
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Victória Valente Califre de Mello
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Gregory K. Rice
- Leidos, Inc., Reston, VA, United States
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | - Regina Z. Cer
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | | | - Carisa Elisei Oliveira
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Heitor Miraglia Herrera
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Kimberly A. Bishop-Lilly
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | - Clifton L. Dalgard
- The American Genome Center, Center for Military Precision Health and Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - J. Stephen Dumler
- Department of Pathology, University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
Matthee CA, Bierman A, Krasnov BR, Matthee S, van der Mescht L. Documenting the microbiome diversity and distribution in selected fleas from South Africa with an emphasis on the cat flea, Ctenocephalides f. felis. Parasitology 2023; 150:979-989. [PMID: 37681253 PMCID: PMC10941216 DOI: 10.1017/s0031182023000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
The factors that influence parasite associated bacterial microbial diversity and the geographic distributions of bacteria are not fully understood. In an effort to gain a deeper understanding of the relationship between the bacterial diversity of Ctenocephalides fleas and host species and the external environment, we conducted a metagenetic analysis of 107 flea samples collected from 8 distinct sampling sites in South Africa. Pooled DNA samples mostly comprising of 2 or 3 individuals sampled from the same host, and belonging to the same genetic cluster, were sequenced using the Ion PGM™ Hi-Q™ Kit and the Ion 316™ Chip v2. Differences were detected in the microbiome compositions between Ctenocephalides felis, Ctenocephalides canis and Ctenocephalides connatus. Although based on a small sample, C. connatus occurring on wildlife harboured a higher bacterial richness when compared to C. felis on domestic animals. Intraspecific differences in the microbial OTU diversity were detected within C. f. felis that occurred on domestic cats and dogs. Different genetic lineages of C. f. felis were similar in microbial compositions but some differences exist in the presence or absence of rare bacteria. Rickettsia and Bartonella OTU's identified in South African cat fleas differ from those identified in the USA and Australia. Intraspecific microbial compositions also differ across geographic sampling sites. Generalized dissimilarity modelling showed that temperature and humidity are potentially important environmental factors explaining the pattern obtained.
Collapse
Affiliation(s)
- Conrad A. Matthee
- Department of Botany and Zoology, Evolutionary Genomics Group, Stellenbosch University, Stellenbosch, South Africa
| | - Anandi Bierman
- Department of Conservation Ecology & Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Boris R. Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Sonja Matthee
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Luther van der Mescht
- Department of Botany and Zoology, Evolutionary Genomics Group, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Eriksson A, Filion A, Labruna MB, Muñoz-Leal S, Poulin R, Fischer E, Graciolli G. Effects of forest loss and fragmentation on bat-ectoparasite interactions. Parasitol Res 2023; 122:1391-1402. [PMID: 37039866 DOI: 10.1007/s00436-023-07839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Human land use causes habitat loss and fragmentation, influencing host-parasite associations through changes in infestation rates, host mortality and possibly local extinction. Bat-ectoparasite interactions are an important host-parasite model possibly affected by such changes, as this system acts as both reservoirs and vectors of several pathogens that can infect different wild and domestic species. This study aimed to assess how the prevalence and abundance of bat ectoparasites respond to forest loss, fragmentation, and edge length. Bats and ectoparasites were sampled at twenty sites, forming a gradient of forest cover, in southwestern Brazil during two wet (2015 and 2016) and two dry (2016 and 2017) seasons. Effects of landscape metrics on host abundance as well as parasite prevalence and abundance were assessed through structural equation models. Nine host-parasite associations provided sufficient data for analyses, including one tick and eight flies on four bat species. Forest cover positively influenced the prevalence or abundance of three fly species, but negatively influenced one fly and the tick species. Prevalence or abundance responded positively to edge length for three fly species, and negatively for the tick. In turn, number of fragments influenced the prevalence or abundance of four fly species, two positively and two negatively. Our results support species-specific responses of ectoparasites to landscape features, and a tendency of host-generalist ticks to benefit from deforestation while most host-specialist flies are disadvantaged. Differences in host traits and abundance, along with parasite life cycles and environmental conditions, are possible explanations to our findings.
Collapse
Affiliation(s)
- Alan Eriksson
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa E Silva S/N, CEP 79070-900, Campo Grande, Brasil.
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa, nº 2367, CEP 78060-900, Cuiabá, Brasil.
| | - Antoine Filion
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Marcelo Bahia Labruna
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Sebástian Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Casilla 537, 3780000, Chillán, Chile
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Erich Fischer
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa E Silva S/N, CEP 79070-900, Campo Grande, Brasil
| | - Gustavo Graciolli
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa E Silva S/N, CEP 79070-900, Campo Grande, Brasil
| |
Collapse
|
7
|
Pires RS, Soares G, Souza RF, Teixeira TS, Monteiro-Alves PS, Lourenço EC, Bergallo HG, Costa LM, Santori RT, Esbérard CE, Moratelli R, Novaes RL. Bat species diversity from Reserva Ecológica de Guapiaçu, Rio de Janeiro, Brazil: a compilation of two decades of sampling. ZOOLOGIA 2022. [DOI: 10.1590/s1984-4689.v39.e22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|