1
|
Sun X, Kong T, Huang D, Chen Z, Zhang Y, Häggblom MM, Soleimani M, Liu H, Ren Y, Wang Y, Huang Y, Li B, Sun W. Microbial Sulfur and Arsenic Oxidation Facilitate the Establishment of Biocrusts during Reclamation of Degraded Mine Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12441-12453. [PMID: 38900020 DOI: 10.1021/acs.est.3c10945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Degraded tailings generated by the mining of metal ores are major environmental threats to the surrounding ecosystems. Tailing reclamation, however, is often impeded due to adverse environmental conditions, with depleted key nutrients (i.e., nitrogen (N) and phosphorus (P)) and elevated sulfur and metal(loid) concentrations. Formation of biocrusts may significantly accelerate nutrient accumulation and is therefore an essential stage for tailing reclamation. Although suggested to play an important role, the microbial community composition and key metabolisms in biocrusts remain largely unknown and are therefore investigated in the current study. The results suggested that sulfur and arsenic oxidation are potential energy sources utilized by members of predominant biocrust bacterial families, including Beijerinckiaceae, Burkholderiaceae, Hyphomicrobiaceae, and Rhizobiaceae. Accordingly, the S and As oxidation potentials are elevated in biocrusts compared to those in their adjacent tailings. Biocrust growth, as proxied by chlorophyll concentrations, is enhanced in treatments supplemented with S and As. The elevated biocrust growth might benefit from nutrient acquisition services (i.e., nitrogen fixation and phosphorus solubilization) fueled by microbial sulfur and arsenic oxidation. The current study suggests that sulfur- and arsenic-oxidizing microorganisms may play important ecological roles in promoting biocrust formation and facilitating tailing reclamation.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuxue Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Youhua Ren
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yize Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
2
|
Isaac A, Mohamed AR, Amin SA. Rhodobacteraceae are key players in microbiome assembly of the diatom Asterionellopsis glacialis. Appl Environ Microbiol 2024; 90:e0057024. [PMID: 38809046 PMCID: PMC11218658 DOI: 10.1128/aem.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly. IMPORTANCE Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.
Collapse
Affiliation(s)
- Ashley Isaac
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Amin R. Mohamed
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shady A. Amin
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Maestre FT, Biancari L, Chen N, Corrochano-Monsalve M, Jenerette GD, Nelson C, Shilula KN, Shpilkina Y. Research needs on the biodiversity-ecosystem functioning relationship in drylands. NPJ BIODIVERSITY 2024; 3:12. [PMID: 39242863 PMCID: PMC11332164 DOI: 10.1038/s44185-024-00046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/05/2024] [Indexed: 09/09/2024]
Abstract
Research carried out in drylands over the last decade has provided major insights on the biodiversity-ecosystem functioning relationship (BEFr) and about how biodiversity interacts with other important factors, such as climate and soil properties, to determine ecosystem functioning and services. Despite this, there are important gaps in our understanding of the BEFr in drylands that should be addressed by future research. In this perspective we highlight some of these gaps, which include: 1) the need to study the BEFr in bare soils devoid of perennial vascular vegetation and biocrusts, a major feature of dryland ecosystems, 2) evaluating how intra-specific trait variability, a key but understudied facet of functional diversity, modulate the BEFr, 3) addressing the influence of biotic interactions on the BEFr, including plant-animal interactions and those between microorganisms associated to biocrusts, 4) studying how differences in species-area relationships and beta diversity are associated with ecosystem functioning, and 5) considering the role of temporal variability and human activities, both present and past, particularly those linked to land use (e.g., grazing) and urbanization. Tackling these gaps will not only advance our comprehension of the BEFr but will also bolster the effectiveness of management and ecological restoration strategies, crucial for safeguarding dryland ecosystems and the livelihoods of their inhabitants.
Collapse
Affiliation(s)
- Fernando T Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Lucio Biancari
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
- Cátedra de Ecología, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Ning Chen
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, No.222, Tianshui South Road, Lanzhou, Gansu, 730000, China
| | - Mario Corrochano-Monsalve
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - G Darrel Jenerette
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Corey Nelson
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
| | - Kaarina N Shilula
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
| | - Yelyzaveta Shpilkina
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
| |
Collapse
|
4
|
Giraldo-Silva A, Masiello CA. Environmental conditions play a key role in controlling the composition and diversity of Colombian biocrust microbiomes. Front Microbiol 2024; 15:1236554. [PMID: 38725684 PMCID: PMC11081033 DOI: 10.3389/fmicb.2024.1236554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
Drylands soils worldwide are naturally colonized by microbial communities known as biocrusts. These soil microbiomes render important ecosystem services associated with soil fertility, water holding capacity, and stability to the areas they cover. Because of the importance of biocrusts in the global cycling of nutrients, there is a growing interest in describing the many microbial configurations these communities display worldwide. However, comprehensive 16S rRNA genes surveys of biocrust communities do not exist for much of the planet: for example, in the continents of South America and the northern part of Africa. The absence of a global understanding of biocrust biodiversity has lead us to assign a general importance to community members that may, in fact, be regional. Here we report for the first time the presence of biocrusts in Colombia (South America) through 16S rRNA genes surveys across an arid, a semi-arid and a dry subtropical region within the country. Our results constitute the first glance of the Bacterial/Archaeal communities associated with South American biocrust microbiomes. Communities where cyanobacteria other than Microcoleus vaginatus prevail, despite the latter being considered a key species elsewhere, illustrate differentiable results in these surveys. We also find that the coastal biocrust communities in Colombia include halo-tolerant and halophilic species, and that niche preference of some nitrogen fixing organisms deviate from previously described global trends. In addition, we identified a high proportion (ranging from 5 to 70%, in average) of cyanobacterial sequences that did not match any formally described cyanobacterial species. Our investigation of Colombian biocrusts points to highly diverse communities with climatic regions controlling taxonomic configurations. They also highlight an extensive local diversity to be discovered which is central to better design management and restoration strategies for drylands soils currently undergoing disturbances due to land use and global warming. Finally, this field study highlights the need for an improved mechanistic understanding of the response of key biocrust community members to changes in moisture and temperature.
Collapse
Affiliation(s)
- Ana Giraldo-Silva
- Department of Science, Ecology Group and Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre (UPNA), Pamplona, Spain
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| |
Collapse
|
5
|
Nelson C, Dadi P, Shah DD, Garcia-Pichel F. Spatial organization of a soil cyanobacterium and its cyanosphere through GABA/Glu signaling to optimize mutualistic nitrogen fixation. THE ISME JOURNAL 2024; 18:wrad029. [PMID: 38366166 PMCID: PMC10881301 DOI: 10.1093/ismejo/wrad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
Soil biocrusts are characterized by the spatial self-organization of resident microbial populations at small scales. The cyanobacterium Microcoleus vaginatus, a prominent primary producer and pioneer biocrust former, relies on a mutualistic carbon (C) for nitrogen (N) exchange with its heterotrophic cyanosphere microbiome, a mutualism that may be optimized through the ability of the cyanobacterium to aggregate into bundles of trichomes. Testing both environmental populations and representative isolates, we show that the proximity of mutualistic diazotroph populations results in M. vaginatus bundle formation orchestrated through chemophobic and chemokinetic responses to gamma-aminobutyric acid (GABA) /glutamate (Glu) signals. The signaling system is characterized by: a high GABA sensitivity (nM range) and low Glu sensitivity (μM to mM), the fact that GABA and Glu are produced by the cyanobacterium as an autoinduction response to N deficiency, and by the presence of interspecific signaling by heterotrophs in response to C limitation. Further, it crucially switches from a positive to a negative feedback loop with increasing GABA concentration, thus setting maximal bundle sizes. The unprecedented use of GABA/Glu as an intra- and interspecific signal in the spatial organization of microbiomes highlights the pair as truly universal infochemicals.
Collapse
Affiliation(s)
- Corey Nelson
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
- Instituto Multidisciplinar Para Estudios del Medio “Ramon Margalef”, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - Pavani Dadi
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Dhara D Shah
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
6
|
Abstract
Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.
Collapse
Affiliation(s)
- Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|