1
|
Wang K, Flury M, Kuzyakov Y, Zhang H, Zhu W, Jiang R. Aluminum and microplastic release from reflective agricultural films disrupt microbial communities and functions in soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137891. [PMID: 40081051 DOI: 10.1016/j.jhazmat.2025.137891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Reflective agricultural films are widely used in vegetable production and orchards to repel pests, accelerate fruit ripening, and boost yields. These films, composed of a plastic base metallized with aluminum (Al), degrade over time in soil, releasing Al and microplastics. This study investigated the aging and weathering of Al-coated reflective films (polyethylene terephthalate, PET-based) under UV radiation, simulated rainfall, and soil burial for up to 120 days, assessing the effects of released Al and microplastics on soil chemistry and microbial communities. Weathering was confirmed by the formation of C-O/CO functional groups, an increasing carbonyl index, and the oxidation of Al to Al₂O₃, as shown by Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Faster Al-coated shedding and PET oxidation were observed in the soil environment. Microplastics (0.5 % w/w) from the films reduced soil micronutrient availability (Fe, Mn, Cu), suppressed functional genes involved in carbon, nitrogen, and phosphorus cycling, and shifted microbial communities towards oligotrophic bacteria enrichment (e.g., RB41, Candidatus_Udaeobacter, Gemmatimonadetes, and Chloroflexi) while reducing copiotrophic bacteria (e.g., Sphingomonas, Ellin6067, Dongia, Puia, and Flavisolibacter). Therefore, these findings highlight that reflective film weathering strongly alters soil nutrient content and microbial community composition, with potential implications for soil health and agricultural sustainability.
Collapse
Affiliation(s)
- Kai Wang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Pullman 99164 and Puyallup, WA 98371, United States
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science, Georg-August, University of Göttingen, Göttingen 37077, Germany; Bioeconomy Research Institute, Vytautas Magnus University, Agriculture Academy, Studentu 11, LT-53361 Akademija, Kaunas Reg., Lithuania
| | - Hao Zhang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Zhu
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China
| | - Rui Jiang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China.
| |
Collapse
|
2
|
Ahmad W, Coffman L, Ray R, Woldesenbet S, Singh G, Khan AL. Flooding episodes and seed treatment influence the microbiome diversity and function in the soybean root and rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179554. [PMID: 40367854 DOI: 10.1016/j.scitotenv.2025.179554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/16/2025]
Abstract
Climate change-related events such as flooding have threatened crop productivity, agricultural sustainability, and global food security by causing hypoxic conditions. Such conditions impaire root development and nutrient acquisition, and alter root rhizospheric microbial communities that are vital for plant health and productivity. Seed treatment with pathogen protection have been key to maintaining early seed germination and plant productivity in field conditions. Still, their role in flooding stress and microbiome diversity and functionality in soybeans is poorly understood. Here, we performed field-based investigations to understand the impact of flooding episodes (0, 3, and 7 days after floodings; DAF) and seed treatment (Cruiser MAXX) on soybean plant growth and rhizosphere microbiome diversity and functionality. Flooding episodes significantly reduced seed yield (746 kg ha-1) compared to untreated control. However, the seed treatment increased plant height and pods per plant (3-DAF) and reduced flood injury by 33 % (7-DAF). The shotgun metagenomic analysis showed that seed treatment significantly enhanced the microbial community in rhizospheric soil. Flooding episodes impacted the microbial communities with higher abundance at 3-DAF than at 7-DAF. Flooding stress reduced the microbial diversity, although Proteobacteria increased as root endophytes. Seed treatment and flooding combinations decreased microbiome functionality and reduced gene counts for phytohormone biosynthesis, fermentation, nitrogen, symbiosis, and degradation pathways. Similarly, flooding stress shifted the carbohydrate synthesis to a more specialized substrate. These findings enhance understanding of soybean root and rhizosphere microbiome diversity and functionality dynamics during flooding stress and provide a platform to develop sustainable agricultural practices for enhancing soybean stress tolerance to flooding.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Houston, TX 77004, USA; Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, USA
| | - Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Houston, TX 77004, USA; Texas A&M AgriLife Research, Department of Soil and Crop Sciences, Texas A&M University, Overton, TX 75684, USA
| | - Ram Ray
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, USA
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, USA
| | - Gurbir Singh
- Division of Plant Sciences and Technology, University of Missouri Lee Greenley Jr. Memorial Research Center, Novelty, MO 63460, USA.
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Houston, TX 77004, USA; Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Li C, Hou J, Kong M, Yao Y, Adyel TM, Wu J, You G, Yu Y, Liu S, Yang Z, Miao L. Increasing drying changes the relationship between biodiversity and ecosystem multifunctionality. NPJ Biofilms Microbiomes 2025; 11:72. [PMID: 40328787 PMCID: PMC12056148 DOI: 10.1038/s41522-025-00711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Increased drying of rivers under global climate change is leading to biodiversity loss. However, it is not clear whether biodiversity loss affects river functions. In this study, we investigated the changes in biofilm community diversity and functions in an artificial stream after different drying durations. A critical drying duration of around 60 days was found in the microbial composition and functions. Therefore, different drying durations can be divided into short-term drying (~0-20 days) and long-term drying (~60-130 days) to analyse the effect of biodiversity in terms of ecosystem functions. In summary, the dominant relationship of biodiversity on community stability got uncoupled after long-term drying. Community assembly became dominant in maintaining multifunctionality with increasing drying duration rather than biodiversity as traditionally perceived. This study reveals the importance of community assembly, extending theoretical knowledge of the relationship between biodiversity and ecosystem multifunctionality.
Collapse
Affiliation(s)
- Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Tanveer M Adyel
- Centre for Nature Positive Solutions, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yue Yu
- Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, Zürich, 8092, Switzerland
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
4
|
Ma X, Wei Z, Wang X, Li C, Feng X, Shan J, Yan X, Ji R. Microplastics from polyvinyl chloride agricultural plastic films do not change nitrogenous gas emission but enhance denitrification potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135758. [PMID: 39244981 DOI: 10.1016/j.jhazmat.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The effects of microplastics (MPs) from agricultural plastic films on soil nitrogen transformation, especially denitrification, are still obscure. Here, using a robotized flow-through system, we incubated vegetable upland soil cores for 66 days with MPs from PE mulching film (F-PE) and PVC greenhouse film (F-PVC) and directly quantified the emissions of nitrogenous gases from denitrification under oxic conditions, as well as the denitrification potential under anoxic conditions. The impact of MPs on soil nitrogen transformation was largely determined by the concentration of the additive phthalate esters (PAEs) containing in the MPs. The F-PE MPs with low level of PAEs (about 0.006 %) had no significant effect on soil mineral nitrogen content and nitrogenous gas emissions under oxic conditions. In contrast, the F-PVC MPs with high levels of PAEs (about 11 %) reduced soil nitrate content under oxic conditions, probably owing to promoted microbial assimilation of nitrogen, as the emissions of denitrification products (N2, NO, and N2O) was not affected. However, the F-PVC MPs significantly enhanced the denitrification potential of the soil due to the increased abundance of denitrifiers under anoxic conditions. These findings highlight the disturbance of MPs from agricultural films, particularly the additive PAEs on nitrogen transformation in soil ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Wang X, Zhu J, Liu Q, Fu Q, Hu H, Huang Q. Role of genes encoding microbial carbohydrate-active enzymes in the accumulation and dynamics of organic carbon in subtropical forest soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170295. [PMID: 38278240 DOI: 10.1016/j.scitotenv.2024.170295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Microbial anabolism and catabolism regulate the accumulation and dynamics of soil organic carbon (SOC). However, very little attention has been paid to the role of microbial functional traits in the accumulation and dynamics of SOC in forest soils. In this study, nine forest soils were selected at three altitudes (600 m, 1200 m, and 1500 m) and three soil depths (0-15 cm, 15-30 cm, and 30-45 cm) located in Jiugong Mountain. Vertical traits of functional genes encoding microbial carbohydrate-active enzymes (CAZymes) were observed using metagenomic sequencing. Soil amino sugars were used as biomarkers to indicate microbial residue carbon (MRC). The results showed that GH1 (β-glucosidase: 147.49 TPM) and GH3 (β-glucosidase: 109.09 TPM) were the dominant genes for plant residue decomposition, and their abundance increased with soil depth and peaked in the deep soil at 600 m (GH1: 147.89 TPM; GH3: 109.59 TPM). The highest abundance of CAZymes for fungal and bacterial residue decomposition were GH18 (chitinase: 30.81 TPM) and GH23 (lysozyme: 58.02 TPM), respectively. The abundance of GH18 increased with soil depth, while GH23 showed the opposite trend. Moreover, MRC accumulation was significantly positively correlated with CAZymes involved in the degradation of hemicellulose (r = 0.577, p = 0.002). Compared with the soil before incubation, MRC in the topsoil at the low and middle altitudes after incubation increased by 4 % and 8 %, respectively, while MRC in the soils at 1500 m tended to decrease (p > 0.05). The mineralization capacity of SOC at 1500 m was significantly higher than that at 1200 m and 600 m (p < 0.05). Our results suggested that microbial function for degrading plant residue components, especially hemicellulose and lignin, contributed greatly to SOC accumulation and dynamics. These results were vital for understanding the roles of microbial functional traits in C cycling in forest.
Collapse
Affiliation(s)
- Xinran Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qianru Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Zhou X, Xiao C, Zhang B, Chen T, Yang X. Effects of microplastics on carbon release and microbial community in mangrove soil systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133152. [PMID: 38056259 DOI: 10.1016/j.jhazmat.2023.133152] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Mangrove ecosystems are major carbon sink biomes and also a sink of microplastics (MPs). The final enrichment of MPs in sediments may have a significant impact on the microbial community and carbon turnover in the soil. However, the effects of MP pollution on the mangrove soil microbial communities and carbon release remain unknown. Here, we conducted a manipulative incubation experiment by adding MPs to soil at different soil depths to examine the effect of enriched MPs on soil microorganisms and its function (i.e., decomposition of soil carbon). The results showed that the addition of MPs had no significant effect on the microbial diversity and CO2 cumulative emission in the topsoil but significantly increased CO2 release from the subsoil. The promoting effect of polylactide (PLA) on the release of CO2 from the subsoil was stronger than that of polyethylene (PE) and aging PE. In the subsoil, the activity of soil extracellular enzymes related to N acquisition increased with the MP addition, indicating an increase in microbial N deficiency. The subsoil was more sensitive to MPs because of the exacerbated nitrogen limitation. MP addition reduced the microbial diversity of the subsoil and altered soil microbial interactions. The increasing abundance of some microbial taxa, especially bacteria related to the sulfur cycle, indicated more active electron transfer and organic carbon mineralization in the subsoil. Our findings suggest that MP contamination has potential effects on microbial communities, nutrient cycling, and carbon release in mangrove soils that vary depending on soil depth.
Collapse
Affiliation(s)
- Xu Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Bingwei Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Tao Chen
- MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou).
| |
Collapse
|