1
|
Wang H, Dai H, Jiang D, Cao X, Wang R, Dai Z, Zhang W, Abbasi HN, Li B, Zhu G, Wang X. Screening, identification, and application of anaerobic ammonia oxidizing bacteria in activated sludge systems: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124272. [PMID: 39874694 DOI: 10.1016/j.jenvman.2025.124272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Anaerobic ammonium oxidation (Anammox) has garnered significant attention due to its ability to eliminate the need for aeration and supplementary carbon sources in biological nitrogen removal process, relying on the capacity of anaerobic ammonium oxidizing bacteria (AnAOB) to directly convert ammonium and nitrite nitrogen into nitrogen gas. This review consolidates the latest advancements in AnAOB research, outlining the mechanisms and enzymatic processes of Anammox, and summarizing the molecular biological techniques used for studying AnAOB, such as 16s rRNA sequencing, qPCR, and metagenomic sequencing. Additionally, it also overviews the currently identified AnAOB species and their distinct metabolic traits, while consolidating strategies to improve their performance. It further delineates coupled processes that utilize Anammox technology, offering practical insights for process selection. Eventually, the review concludes by suggesting future research directions and highlighting critical areas for further investigation. This review serves as a theoretical reference for the enrichment and cultivation of AnAOB, environmental impact management, and the selection of effective treatment processes.
Collapse
Affiliation(s)
- Haoyun Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Deyi Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Xuandi Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Ruochen Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Zheqin Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Wuxiang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Haq Nawaz Abbasi
- Department of Environmental science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng, 224000, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| |
Collapse
|
2
|
Wang S, Yuan Y, Liu F, Liu R, Zhang X, Jiang Y. Coupling Thiosulfate-Driven denitrification and anammox to remove nitrogen from actual wastewater. BIORESOURCE TECHNOLOGY 2025; 417:131840. [PMID: 39561930 DOI: 10.1016/j.biortech.2024.131840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
A coupled thiosulfate-driven denitrification and anammox (TDDA) process was established to remove nitrogen from wastewater. It was optimized in an up-flow anaerobic sludge blanket reactor using synthetic wastewater, and its reliability was then verified with actual wastewater. The results demonstrated that nitrate, nitrite, and ammonium could be synergistically removed, and the highest total nitrogen removal efficiency reached 97.8% at a loading of 1.39 kgN/(m3·d). Anammox bacteria, primarily Candidatus_Brocadia, were the main contributors to nitrogen removal, while sulfur-oxidizing bacteria such as Thiobacillus and Rhodanobacter played a supportive role. By optimizing substrate conditions to enhance the anammox process, the coupled system attained higher abundances of functional genes such as napA, nirS, hzs, soxXA, and soxYZ, along with the corresponding microbial species. The data suggested that microbial cross-feeding and self-adaptation strategies were key to efficient nitrogen removal by TDDA.
Collapse
Affiliation(s)
- Suqin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ying Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Feng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, PR China.
| | - Rundong Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xuezhi Zhang
- Changzhou Comprehensive Transportation Design & Research Co., Ltd., Changzhou, 213004, PR China
| | - Yibing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
3
|
Zhao R, Jørgensen SL, Babbin AR. An abundant bacterial phylum with nitrite-oxidizing potential in oligotrophic marine sediments. Commun Biol 2024; 7:449. [PMID: 38605091 PMCID: PMC11009272 DOI: 10.1038/s42003-024-06136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Nitrite-oxidizing bacteria (NOB) are important nitrifiers whose activity regulates the availability of nitrite and dictates the magnitude of nitrogen loss in ecosystems. In oxic marine sediments, ammonia-oxidizing archaea (AOA) and NOB together catalyze the oxidation of ammonium to nitrate, but the abundance ratios of AOA to canonical NOB in some cores are significantly higher than the theoretical ratio range predicted from physiological traits of AOA and NOB characterized under realistic ocean conditions, indicating that some NOBs are yet to be discovered. Here we report a bacterial phylum Candidatus Nitrosediminicolota, members of which are more abundant than canonical NOBs and are widespread across global oligotrophic sediments. Ca. Nitrosediminicolota members have the functional potential to oxidize nitrite, in addition to other accessory functions such as urea hydrolysis and thiosulfate reduction. While one recovered species (Ca. Nitrosediminicola aerophilus) is generally confined within the oxic zone, another (Ca. Nitrosediminicola anaerotolerans) additionally appears in anoxic sediments. Counting Ca. Nitrosediminicolota as a nitrite-oxidizer helps to resolve the apparent abundance imbalance between AOA and NOB in oxic marine sediments, and thus its activity may exert controls on the nitrite budget.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Steffen L Jørgensen
- Centre for Deep-Sea Research, Department of Earth Science, University of Bergen, Bergen, Norway
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Cuecas A, Barrau MJ, Gonzalez JM. Microbial divergence and evolution. The case of anammox bacteria. Front Microbiol 2024; 15:1355780. [PMID: 38419632 PMCID: PMC10900513 DOI: 10.3389/fmicb.2024.1355780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Species differentiation and the appearance of novel diversity on Earth is a major issue to understand the past and future of microbial evolution. Herein, we propose the analysis of a singular evolutive example, the case of microorganisms carrying out the process of anammox (anaerobic ammonium oxidation). Anammox represents a singular physiology active on Earth from ancient times and, at present, this group is still represented by a relatively limited number of species carrying out a specific metabolism within the Phylum Planctomycetota. The key enzyme on the anammox pathway is hydrazine dehydrogenase (HDH) which has been used as a model in this study. HDH and rRNA (16S subunit) phylogenies are in agreement suggesting a monophyletic origin. The diversity of this singular phylogenetic group is represented by a few enriched bacterial consortia awaiting to be cultured as monospecific taxa. The apparent evolution of the HDH genes in these anammox bacteria is highly related to the diversification of the anammox clades and their genomes as pointed by phylogenomics, their GC content and codon usage profile. This study represents a clear case where bacterial evolution presents a paralleled genome, gene and species diversification through time from a common ancestor; a scenario that most times is masked by a web-like phylogeny and the huge complexity within the prokaryotes. Besides, this contribution suggests that microbial evolution of the anammox bacteria has followed an ordered, vertical diversification through Earth history and will present a potentially similar speciation fate in the future.
Collapse
Affiliation(s)
| | | | - Juan M. Gonzalez
- Institute of Natural Resources and Agrobiology, Spanish National Council for Research, IRNAS-CSIC, Sevilla, Spain
| |
Collapse
|
5
|
Zhao R, Zhang IH, Jayakumar A, Ward BB, Babbin AR. Age, metabolisms, and potential origin of dominant anammox bacteria in the global oxygen-deficient zones. ISME COMMUNICATIONS 2024; 4:ycae060. [PMID: 38770059 PMCID: PMC11104535 DOI: 10.1093/ismeco/ycae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Anammox bacteria inhabiting oxygen-deficient zones (ODZs) are a major functional group mediating fixed nitrogen loss in the global ocean. However, many basic questions regarding the diversity, broad metabolisms, origin, and adaptive mechanisms of ODZ anammox bacteria remain unaddressed. Here we report two novel metagenome-assembled genomes of anammox bacteria affiliated with the Scalindua genus, which represent most, if not all, of the anammox bacteria in the global ODZs. Metagenomic read-recruiting and comparison with historical data show that they are ubiquitously present in all three major ODZs. Beyond the core anammox metabolism, both organisms contain cyanase, and the more dominant one encodes a urease, indicating most ODZ anammox bacteria can utilize cyanate and urea in addition to ammonium. Molecular clock analysis suggests that the evolutionary radiation of these bacteria into ODZs occurred no earlier than 310 million years ago, ~1 billion years after the emergence of the earliest modern-type ODZs. Different strains of the ODZ Scalindua species are also found in benthic sediments, and the first ODZ Scalindua is likely derived from the benthos. Compared to benthic strains of the same clade, ODZ Scalindua uniquely encodes genes for urea utilization but has lost genes related to growth arrest, flagellum synthesis, and chemotaxis, presumably for adaptation to thrive in the global ODZ waters. Our findings expand the known metabolisms and evolutionary history of the bacteria controlling the global nitrogen budget.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Irene H Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
6
|
Zhao R, Le Moine Bauer S, Babbin AR. " Candidatus Subterrananammoxibiaceae," a New Anammox Bacterial Family in Globally Distributed Marine and Terrestrial Subsurfaces. Appl Environ Microbiol 2023; 89:e0080023. [PMID: 37470485 PMCID: PMC10467342 DOI: 10.1128/aem.00800-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteria specialized in anaerobic ammonium oxidation (anammox) are widespread in many anoxic habitats and form an important functional guild in the global nitrogen cycle by consuming bio-available nitrogen for energy rather than biomass production. Due to their slow growth rates, cultivation-independent approaches have been used to decipher their diversity across environments. However, their full diversity has not been well recognized. Here, we report a new family of putative anammox bacteria, "Candidatus Subterrananammoxibiaceae," existing in the globally distributed terrestrial and marine subsurface (groundwater and sediments of estuary, deep-sea, and hadal trenches). We recovered a high-quality metagenome-assembled genome of this family, tentatively named "Candidatus Subterrananammoxibius californiae," from a California groundwater site. The "Ca. Subterrananammoxibius californiae" genome not only contains genes for all essential components of anammox metabolism (e.g., hydrazine synthase, hydrazine oxidoreductase, nitrite reductase, and nitrite oxidoreductase) but also has the capacity for urea hydrolysis. In an Arctic ridge sediment core where redox zonation is well resolved, "Ca. Subterrananammoxibiaceae" is confined within the nitrate-ammonium transition zone where the anammox rate maximum occurs, providing environmental proof of the anammox activity of this new family. Phylogenetic analysis of nitrite oxidoreductase suggests that a horizontal transfer facilitated the spreading of the nitrite oxidation capacity between anammox bacteria (in the Planctomycetota phylum) and nitrite-oxidizing bacteria from Nitrospirota and Nitrospinota. By recognizing this new anammox family, we propose that all lineages within the "Ca. Brocadiales" order have anammox capacity. IMPORTANCE Microorganisms called anammox bacteria are efficient in removing bioavailable nitrogen from many natural and human-made environments. They exist in almost every anoxic habitat where both ammonium and nitrate/nitrite are present. However, only a few anammox bacteria have been cultured in laboratory settings, and their full phylogenetic diversity has not been recognized. Here, we present a new bacterial family whose members are present across both the terrestrial and marine subsurface. By reconstructing a high-quality genome from the groundwater environment, we demonstrate that this family has all critical enzymes of anammox metabolism and, notably, also urea utilization. This bacterium family in marine sediments is also preferably present in the niche where the anammox process occurs. These findings suggest that this novel family, named "Candidatus Subterrananammoxibiaceae," is an overlooked group of anammox bacteria, which should have impacts on nitrogen cycling in a range of environments.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sven Le Moine Bauer
- Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen, Norway
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Nie WB, Xie GJ, Tan X, Ding J, Lu Y, Chen Y, Yang C, He Q, Liu BF, Xing D, Ren N. Microbial Niche Differentiation during Nitrite-Dependent Anaerobic Methane Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7029-7040. [PMID: 37041123 DOI: 10.1021/acs.est.2c08094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-DAMO) has been demonstrated to play important roles in the global methane and nitrogen cycle. However, despite diverse n-DAMO bacteria widely detected in environments, little is known about their physiology for microbial niche differentiation. Here, we show the microbial niche differentiation of n-DAMO bacteria through long-term reactor operations combining genome-centered omics and kinetic analysis. With the same inoculum dominated by both species "Candidatus Methylomirabilis oxyfera" and "Candidatus Methylomirabilis sinica", n-DAMO bacterial population was shifted to "Ca. M. oxyfera" in a reactor fed with low-strength nitrite, but shifted to "Ca. M. sinica" with high-strength nitrite. Metatranscriptomic analysis showed that "Ca. M. oxyfera" harbored more complete function in cell chemotaxis, flagellar assembly, and two-component system for better uptake of nitrite, while "Ca. M. sinica" had a more active ion transport and stress response system, and more redundant function in nitrite reduction to mitigate nitrite inhibition. Importantly, the half-saturation constant of nitrite (0.057 mM vs 0.334 mM NO2-) and inhibition thresholds (0.932 mM vs 2.450 mM NO2-) for "Ca. M. oxyfera" vs "Ca. M. sinica", respectively, were highly consistent with genomic results. Integrating these findings demonstrated biochemical characteristics, especially the kinetics of nitrite affinity and inhibition determine niche differentiation of n-DAMO bacteria.
Collapse
Affiliation(s)
- Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chun Yang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qiang He
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|