1
|
Deng K, Hua Y, Gao Y, Zheng H, Jiang Y, Wang Y, Gao C, Ren T, Zhu Y. Thermosensitive Hydrogel with Programmable, Self-Regulated HIF-1α Stabilizer Release for Myocardial Infarction Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408013. [PMID: 39308185 DOI: 10.1002/advs.202408013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Indexed: 11/22/2024]
Abstract
HIF-1α (hypoxia induced factor-1α), a vital protective signal against hypoxia, has a short lifetime after myocardial infarction (MI). Increasing HIF-1α stability by inhibiting its hydroxylation with prolyl hydroxylases inhibitors such as DPCA (1,4-dihydrophenonthrolin-4-one-3-carboxylic acid) presents positive results. However, the optimal inhibitor administration profile for MI treatment is still unexplored. Here, injectable, thermosensitive hydrogels with programmable DPCA release are designed and synthesized. Hydrogel degradation and slow DPCA release are coupled to form a feedback loop by attaching pendant DPCA to polymer backbone, which serve as additional crosslinking points through π-π and hydrophobic interactions. Pendant carboxyl groups are added to the copolymer to accelerate DPCA release. Burst release in the acute phase for myocardial protection and extended near zero-order release across the inflammatory and fibrotic phases with different rates are achieved. All DPCA-releasing hydrogels upregulate HIF-1α, decrease apoptosis, promote angiogenesis, and stimulate cardiomyocyte proliferation, leading to preserved cardiac function and ventricular geometry. Faster hydrogel degradation induced by faster DPCA release results in a HIF-1α expression eight times of healthy control and better therapeutic effect in MI treatment. This research demonstrates the value of precise regulation of HIF-1α expression in treating MI and other relevant diseases and provides an implantable device-based modulation strategy.
Collapse
Affiliation(s)
- Kaicheng Deng
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuyan Hua
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Gao
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Houwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, Hong Kong, 999077, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, Hong Kong, 999077, China
| | - Yaping Wang
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Changyou Gao
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tanchen Ren
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Yang Zhu
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
2
|
Zhao X, Williamson T, Gong Y, Epstein JA, Fan Y. Immunomodulatory Therapy for Ischemic Heart Disease. Circulation 2024; 150:1050-1058. [PMID: 39325497 PMCID: PMC11521113 DOI: 10.1161/circulationaha.124.070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 09/27/2024]
Abstract
Ischemic heart disease is a leading cause of death worldwide, manifested clinically as myocardial infarction (and ischemic cardiomyopathy. Presently, there exists a notable scarcity of efficient interventions to restore cardiac function after myocardial infarction. Cumulative evidence suggests that impaired tissue immunity within the ischemic microenvironment aggravates cardiac dysfunction, contributing to progressive heart failure. Recent research breakthroughs propose immunotherapy as a potential approach by leveraging immune and stroma cells to recalibrate the immune microenvironment, holding significant promise for the treatment of ischemic heart disease. In this Primer, we highlight three emerging strategies for immunomodulatory therapy in managing ischemic cardiomyopathy: targeting vascular endothelial cells to rewire tissue immunity, reprogramming myeloid cells to bolster their reparative function, and utilizing adoptive T cell therapy to ameliorate fibrosis. We anticipate that immunomodulatory therapy will offer exciting opportunities for ischemic heart disease treatment.
Collapse
Affiliation(s)
- Xinye Zhao
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Williamson
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A. Epstein
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Lin Y, Gil CH, Banno K, Yokoyama M, Wingo M, Go E, Prasain N, Liu Y, Hato T, Naito H, Wakabayashi T, Sominskaia M, Gao M, Chen K, Geng F, Salinero JMG, Chen S, Shelley WC, Yoshimoto M, Li Calzi S, Murphy MP, Horie K, Grant MB, Schreiner R, Redmond D, Basile DP, Rafii S, Yoder MC. ABCG2-Expressing Clonal Repopulating Endothelial Cells Serve to Form and Maintain Blood Vessels. Circulation 2024; 150:451-465. [PMID: 38682338 PMCID: PMC11300167 DOI: 10.1161/circulationaha.122.061833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.
Collapse
Affiliation(s)
- Yang Lin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chang-Hyun Gil
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kimihiko Banno
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masataka Yokoyama
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Matthew Wingo
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ellen Go
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Division of Pediatric Rheumatology, Riley Hospital for Children, Indianapolis, IN
| | - Nutan Prasain
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ying Liu
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Taku Wakabayashi
- Department of Vascular Physiology, Kanazawa University School of Medicine, Kanazawa, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Musia Sominskaia
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Meng Gao
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Chen
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus Maria Gomez Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sisi Chen
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W. Christopher. Shelley
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Momoko Yoshimoto
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Sergio Li Calzi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Maria B. Grant
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David P. Basile
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mervin C. Yoder
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Zhang D, Cleveland AH, Krimitza E, Han K, Yi C, Stout AL, Zou W, Dorsey JF, Gong Y, Fan Y. Spatial analysis of tissue immunity and vascularity by light sheet fluorescence microscopy. Nat Protoc 2024; 19:1053-1082. [PMID: 38212641 DOI: 10.1038/s41596-023-00941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024]
Abstract
The pathogenesis of cancer and cardiovascular diseases is subjected to spatiotemporal regulation by the tissue microenvironment. Multiplex visualization of the microenvironmental components, including immune cells, vasculature and tissue hypoxia, provides critical information underlying the disease progression and therapy resistance, which is often limited by imaging depth and resolution in large-volume tissues. To this end, light sheet fluorescence microscopy, following tissue clarification and immunostaining, may generate three-dimensional high-resolution images at a whole-organ level. Here we provide a detailed description of light sheet fluorescence microscopy imaging analysis of immune cell composition, vascularization, tissue perfusion and hypoxia in mouse normal brains and hearts, as well as brain tumors. We describe a procedure for visualizing tissue vascularization, perfusion and hypoxia with a transgenic vascular labeling system. We provide the procedures for tissue collection, tissue semi-clearing and immunostaining. We further describe standard methods for analyzing tissue immunity and vascularity. We anticipate that this method will facilitate the spatial illustration of structure and function of the tissue microenvironmental components in cancer and cardiovascular diseases. The procedure requires 1-2 weeks and can be performed by users with expertise in general molecular biology.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail H Cleveland
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisavet Krimitza
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine Han
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chenlong Yi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea L Stout
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Yang F, Akhtar MN, Zhang D, El-Mayta R, Shin J, Dorsey JF, Zhang L, Xu X, Guo W, Bagley SJ, Fuchs SY, Koumenis C, Lathia JD, Mitchell MJ, Gong Y, Fan Y. An immunosuppressive vascular niche drives macrophage polarization and immunotherapy resistance in glioblastoma. SCIENCE ADVANCES 2024; 10:eadj4678. [PMID: 38416830 PMCID: PMC10901371 DOI: 10.1126/sciadv.adj4678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Cancer immunity is subjected to spatiotemporal regulation by leukocyte interaction with neoplastic and stromal cells, contributing to immune evasion and immunotherapy resistance. Here, we identify a distinct mesenchymal-like population of endothelial cells (ECs) that form an immunosuppressive vascular niche in glioblastoma (GBM). We reveal a spatially restricted, Twist1/SATB1-mediated sequential transcriptional activation mechanism, through which tumor ECs produce osteopontin to promote immunosuppressive macrophage (Mφ) phenotypes. Genetic or pharmacological ablation of Twist1 reverses Mφ-mediated immunosuppression and enhances T cell infiltration and activation, leading to reduced GBM growth and extended mouse survival, and sensitizing tumor to chimeric antigen receptor T immunotherapy. Thus, these findings uncover a spatially restricted mechanism controlling tumor immunity and suggest that targeting endothelial Twist1 may offer attractive opportunities for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Md Naushad Akhtar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Junyoung Shin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay F. Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen J. Bagley
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin D. Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Cleveland AH, Fan Y. Reprogramming endothelial cells to empower cancer immunotherapy. Trends Mol Med 2024; 30:126-135. [PMID: 38040601 PMCID: PMC10922198 DOI: 10.1016/j.molmed.2023.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Cancer immunity is subject to spatiotemporal regulation by leukocyte interaction with the tumor microenvironment. Growing evidence suggests an emerging role for the vasculature in tumor immune evasion and immunotherapy resistance. Beyond the conventional functions of the tumor vasculature, such as providing oxygen and nutrients to support tumor progression, we propose multiplex mechanisms for vascular regulation of tumor immunity: The immunosuppressive vascular niche locoregionally educates circulation-derived immune cells by angiocrines, aberrant endothelial metabolism induces T cell exclusion and inactivation, and topologically and biochemically abnormal vascularity forms a pathophysiological barrier that hampers lymphocyte infiltration. We postulate that genetic and metabolic reprogramming of endothelial cells may rewire the immunosuppressive vascular microenvironment to overcome immunotherapy resistance, serving as a next-generation vascular targeting strategy for cancer treatment.
Collapse
Affiliation(s)
- Abigail H Cleveland
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Nguyen TM, Geng X, Wei Y, Ye L, Garry DJ, Zhang J. Single-cell RNA sequencing analysis identifies one subpopulation of endothelial cells that proliferates and another that undergoes the endothelial-mesenchymal transition in regenerating pig hearts. Front Bioeng Biotechnol 2024; 11:1257669. [PMID: 38288246 PMCID: PMC10823534 DOI: 10.3389/fbioe.2023.1257669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024] Open
Abstract
Background: In our previous work, we demonstrated that when newborn pigs undergo apical resection (AR) on postnatal day 1 (P1), the animals' hearts were completely recover from a myocardial infarction (MI) that occurs on postnatal day 28 (P28); single-nucleus RNA sequencing (snRNAseq) data suggested that this recovery was achieved by regeneration of pig cardiomyocyte subpopulations in response to MI. However, coronary vasculature also has a key role in promoting cardiac repair. Method: Thus, in this report, we used autoencoder algorithms to analyze snRNAseq data from endothelial cells (ECs) in the hearts of the same animals. Main results: Our results identified five EC clusters, three composed of vascular ECs (VEC1-3) and two containing lymphatic ECs (LEC1-2). Cells from VEC1 expressed elevated levels of each of five cell-cyclespecific markers (Aurora Kinase B [AURKB], Marker of Proliferation Ki-67 [MKI67], Inner Centromere Protein [INCENP], Survivin [BIRC5], and Borealin [CDCA8]), as well as a number of transcription factors that promote EC proliferation, while (VEC3 was enriched for genes that regulate intercellular junctions, participate in transforming growth factor β (TGFβ), bone morphogenic protein (BMP) signaling, and promote the endothelial mesenchymal transition (EndMT). The remaining VEC2 did not appear to participate directly in the angiogenic response to MI, but trajectory analyses indicated that it may serve as a reservoir for the generation of VEC1 and VEC3 ECs in response to MI. Notably, only the VEC3 cluster was more populous in regenerating (i.e., ARP1MIP28) than non-regenerating (i.e., MIP28) hearts during the 1-week period after MI induction, which suggests that further investigation of the VEC3 cluster could identify new targets for improving myocardial recovery after MI. Histological analysis of KI67 and EndMT marker PDGFRA demonstrated that while the expression of proliferation of endothelial cells was not significantly different, expression of EndMT markers was significantly higher among endothelial cells of ARP1MIP28 hearts compared to MIP28 hearts, which were consistent with snRNAseq analysis of clusters VEC1 and VEC3. Furthermore, upregulated secrete genes by VEC3 may promote cardiomyocyte proliferation via the Pi3k-Akt and ERBB signaling pathways, which directly contribute to cardiac muscle regeneration. Conclusion: In regenerative heart, endothelial cells may express EndMT markers, and this process could contribute to regeneration via a endothelial-cardiomyocyte crosstalk that supports cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Thanh Minh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xiaoxiao Geng
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel J. Garry
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Xia ZM, Song MY, Chen YL, Cui G, Fan D. TIMP3 induces gene expression partly through PI3K and their association with vascularization and heart rate. Front Cardiovasc Med 2023; 10:1130388. [PMID: 37057103 PMCID: PMC10086129 DOI: 10.3389/fcvm.2023.1130388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundTissue inhibitor of metalloproteinase 3 (TIMP3) was recently demonstrated capable to regulate some gene expression in a myocardial infarction model. Here we aim to explore the gene expression profile in TIMP3-treated cardiomyocytes and related potential cardiovascular functions.MethodsTotal RNA extracted from cultured neonatal rat ventricular myocytes (NRVMs) were used for RNA sequencing analysis and real-time PCR. KEGG pathway enrichment assay and Ingenuity Pathway Analysis (IPA) were performed to study the signaling pathways and downstream effects. Western blot was used to detect phosphorylation of protein kinase B (Akt). A Cell Counting Kit-8 assay was employed to evaluate the proliferation of human umbilical vein endothelial cells (HUVECs). Contraction rate of NRVMs was measured with microscopy.ResultsRNA sequencing data showed that expression of 2,526 genes were significantly modulated by recombinant TIMP3 (rTIMP3, 100 ng/ml) in NRVMs. Some differentially expressed genes (DEGs) were validated with real-time PCR. Several KEGG pathways including the phosphoinositide-3-kinase (PI3K)-Akt pathway were significantly regulated by rTIMP3. Phosphorylation of Akt was increased by rTIMP3 and a PI3K inhibitor LY294002 suppressed rTIMP3-induced up-regulation of some genes. Some DEGs were predicted by IPA to increase vascularization, and some to decrease heart rate. RTIMP3 could reduce the contraction rate of NRVMs and its conditioned media increased the proliferation of HUVECs.ConclusionTIMP3 can regulate expression of multiple genes partly through PI3K. Some DEGs were associated with activation of vascularization and some with heart rate reduction. This study suggests that TIMP3 can potentially modulate cardiovascular functions via DEGs.
Collapse
Affiliation(s)
- Zi-Meng Xia
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Meng-Yu Song
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yan-Ling Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Correspondence: Dong Fan
| |
Collapse
|
9
|
Fan M, Yang K, Wang X, Chen L, Gill PS, Ha T, Liu L, Lewis NH, Williams DL, Li C. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. SCIENCE ADVANCES 2023; 9:eadc9465. [PMID: 36735787 PMCID: PMC9897666 DOI: 10.1126/sciadv.adc9465] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/03/2023] [Indexed: 06/01/2023]
Abstract
High levels of lactate are positively associated with the prognosis and mortality in patients with heart attack. Endothelial-to-mesenchymal transition (EndoMT) plays an important role in cardiac fibrosis. Here, we report that lactate exerts a previously unknown function that increases cardiac fibrosis and exacerbates cardiac dysfunction by promoting EndoMT following myocardial infarction (MI). Treatment of endothelial cells with lactate disrupts endothelial cell function and induces mesenchymal-like function following hypoxia by activating the TGF-β/Smad2 pathway. Mechanistically, lactate induces an association between CBP/p300 and Snail1, leading to lactylation of Snail1, a TGF-β transcription factor, through lactate transporter monocarboxylate transporter (MCT)-dependent signaling. Inhibiting Snail1 diminishes lactate-induced EndoMT and TGF-β/Smad2 activation after hypoxia/MI. The MCT inhibitor CHC mitigates lactate-induced EndoMT and Snail1 lactylation. Silence of MCT1 compromises lactate-promoted cardiac dysfunction and EndoMT after MI. We conclude that lactate acts as an important molecule that up-regulates cardiac EndoMT after MI via induction of Snail1 lactylation.
Collapse
Affiliation(s)
- Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - P. Spencer Gill
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nicole H. Lewis
- Department of Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
10
|
Gole S, Tkachenko S, Masannat T, Baylis RA, Cherepanova OA. Endothelial-to-Mesenchymal Transition in Atherosclerosis: Friend or Foe? Cells 2022; 11:cells11192946. [PMID: 36230908 PMCID: PMC9563961 DOI: 10.3390/cells11192946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Despite many decades of research, complications of atherosclerosis resulting from the rupture or erosion of unstable plaques remain the leading cause of death worldwide. Advances in cellular lineage tracing techniques have allowed researchers to begin investigating the role of individual cell types in the key processes regulating plaque stability, including maintenance of the fibrous cap, a protective collagen-rich structure that underlies the endothelium. This structure was previously thought to be entirely derived from smooth muscle cells (SMC), which migrated from the vessel wall. However, recent lineage tracing studies have identified endothelial cells (EC) as an essential component of this protective barrier through an endothelial-to-mesenchymal transition (EndoMT), a process that has previously been implicated in pulmonary, cardiac, and kidney fibrosis. Although the presence of EndoMT in atherosclerotic plaques has been shown by several laboratories using EC-lineage tracing mouse models, whether EndoMT is detrimental (i.e., worsening disease progression) or beneficial (i.e., an athero-protective response that prevents plaque instability) remains uncertain as there are data to support both possibilities, which will be further discussed in this review.
Collapse
Affiliation(s)
- Sarin Gole
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NB5, Cleveland, OH 44195, USA
| | - Svyatoslav Tkachenko
- Genetics and Genome Sciences, Case Western Reserve University, 2109 Adelbert, RD, BRB, Cleveland, OH 44106, USA
| | - Tarek Masannat
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NB5, Cleveland, OH 44195, USA
| | - Richard A. Baylis
- Department of Medicine, Massachusetts General Hospital, 55 Fruit St Gray 730, Boston, MA 02114, USA
| | - Olga A. Cherepanova
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NB5, Cleveland, OH 44195, USA
- Correspondence: ; Tel.: +1-216-445-7491
| |
Collapse
|
11
|
Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, Wang B, Wong S, Norton V, Dong Y, Lu YW, Zhou C, Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022; 11:1834. [PMID: 35681530 PMCID: PMC9180466 DOI: 10.3390/cells11111834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Shan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beibei Wang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Wong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikram Norton
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|